Skip to main content

Systems Biology for Multiplatform Data Integration: An Overview

  • Protocol
  • First Online:
Biomarkers for Immunotherapy of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2055))

Abstract

In this chapter, we consider some of the concepts behind multiplatform data integration. First, we examine the types of inferences that can be made using methods that integrate data types. Next, we discuss some broad considerations about methodologies. We conclude with the example of joint analyses of germ line genetic variation, gene expression and complex phenotypes. This chapter draws heavily from analyses that integrate datasets for inference on hereditary aspects of cancer susceptibility. However, these concepts should apply more broadly to other domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenman C, Stephens P, Smith R et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446(7132):153–158

    Article  CAS  Google Scholar 

  2. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    Article  Google Scholar 

  3. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

    Article  CAS  Google Scholar 

  4. Gianni L, Zambetti M, Clark K et al (2005) Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 23(29):7265–7277

    Article  CAS  Google Scholar 

  5. Krop I, Ismaila N, Andre F et al (2017) Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast Cancer: American Society of Clinical Oncology clinical practice guideline focused update. J Clin Oncol 35(24):2838–2847

    Article  Google Scholar 

  6. Vazquez AI, Veturi Y, Behring M et al (2016) Increased proportion of variance explained and prediction accuracy of survival of breast Cancer patients with use of whole-genome multiomic profiles. Genetics 203(3):1425–1438

    Article  CAS  Google Scholar 

  7. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  CAS  Google Scholar 

  8. Ayers M, Lunceford J, Nebozhyn M et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940

    Article  Google Scholar 

  9. Aguiar PN Jr, De Mello RA, Hall P, Tadokoro H, Lima Lopes G (2017) PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: updated survival data. Immunotherapy 9(6):499–506

    Article  CAS  Google Scholar 

  10. McGranahan N, Furness AJ, Rosenthal R et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469

    Article  CAS  Google Scholar 

  11. Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17(12):e542–e551

    Article  CAS  Google Scholar 

  12. Perou CM, Jeffrey SS, van de Rijn M et al (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A 96(16):9212–9217

    Article  CAS  Google Scholar 

  13. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874

    Article  CAS  Google Scholar 

  14. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100(14):8418–8423

    Article  CAS  Google Scholar 

  15. Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  Google Scholar 

  16. Robertson AG, Kim J, Al-Ahmadie H et al (2017) Comprehensive molecular characterization of muscle-invasive bladder Cancer. Cell 171(3):540–556 e525

    Article  CAS  Google Scholar 

  17. Hoadley KA, Yau C, Wolf DM et al (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158(4):929–944

    Article  CAS  Google Scholar 

  18. Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4(10):814–819

    Article  CAS  Google Scholar 

  19. Polak P, Kim J, Braunstein LZ et al (2017) A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat Genet 49(10):1476–1486

    Article  CAS  Google Scholar 

  20. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421

    Article  CAS  Google Scholar 

  21. Le DT, Durham JN, Smith KN et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413

    Article  CAS  Google Scholar 

  22. Maxwell KN, Wubbenhorst B, Wenz BM et al (2017) BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers. Nat Commun 8(1):319

    Article  Google Scholar 

  23. Carter H, Marty R, Hofree M et al (2017) Interaction landscape of inherited polymorphisms with somatic events in Cancer. Cancer Discov 7(4):410–423

    Article  CAS  Google Scholar 

  24. Morley M, Molony CM, Weber TM et al (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430(7001):743–747

    Article  CAS  Google Scholar 

  25. Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT (2005) Mapping determinants of human gene expression by regional and genome-wide association. Nature 437(7063):1365–1369

    Article  CAS  Google Scholar 

  26. Pickrell JK, Marioni JC, Pai AA et al (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464(7289):768–772

    Article  CAS  Google Scholar 

  27. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ (2010) Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 6(4):e1000888

    Article  Google Scholar 

  28. Hormozdiari F, van de Bunt M, Segre AV et al (2016) Colocalization of GWAS and eQTL signals detects target genes. Am J Hum Genet 99(6):1245–1260

    Article  CAS  Google Scholar 

  29. Gamazon ER, Segre AV, van de Bunt M et al (2018) Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat Genet 50(7):956–967

    Article  CAS  Google Scholar 

  30. Gamazon ER, Wheeler HE, Shah KP et al (2015) A gene-based association method for mapping traits using reference transcriptome data. Nat Genet 47(9):1091–1098

    Article  CAS  Google Scholar 

  31. Gusev A, Ko A, Shi H et al (2016) Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet 48(3):245–252

    Article  CAS  Google Scholar 

  32. Mancuso N, Shi H, Goddard P, Kichaev G, Gusev A, Pasaniuc B (2017) Integrating gene expression with summary association statistics to identify genes associated with 30 complex traits. Am J Hum Genet 100(3):473–487

    Article  CAS  Google Scholar 

  33. Reshef YA, Finucane HK, Kelley DR et al (2018) Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk. Nat Genet 50(10):1483–1493

    Article  CAS  Google Scholar 

  34. Gusev A, Mancuso N, Won H et al (2018) Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet 50(4):538–548

    Article  CAS  Google Scholar 

  35. Raj T, Li YI, Wong G et al (2018) Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility. Nat Genet 50(11):1584–1592

    Article  CAS  Google Scholar 

  36. Ratnapriya R, Sosina OA, Starostik MR et al (2019) Retinal transcriptome and eQTL analyses identify genes associated with age-related macular degeneration. Nat Genet

    Google Scholar 

  37. Wu L, Shi W, Long J et al (2018) A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nat Genet 50(7):968–978

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elad Ziv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ziv, E. (2020). Systems Biology for Multiplatform Data Integration: An Overview. In: Thurin, M., Cesano, A., Marincola, F. (eds) Biomarkers for Immunotherapy of Cancer. Methods in Molecular Biology, vol 2055. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9773-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9773-2_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9772-5

  • Online ISBN: 978-1-4939-9773-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics