Skip to main content

Immunological Targets for Immunotherapy: Inhibitory T Cell Receptors

  • Protocol
  • First Online:
Biomarkers for Immunotherapy of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2055))

Abstract

Tumor development is characterized by the accumulation of mutational and epigenetic changes that transform normal cells and survival pathways into self-sustaining cells capable of untrammeled growth. Although multiple modalities including surgery, radiation, and chemotherapy are available for the treatment of cancer, the benefits conferred are often limited. The immune system is capable of specific, durable, and adaptable responses. However, cancers hijack immune mechanisms such as negative regulatory checkpoints that have evolved to limit inflammatory and immune responses to thwart effective antitumor immunity. The development of monoclonal antibodies against inhibitory receptors expressed by immune cells has produced durable responses in a broad array of advanced malignancies and heralded a new dawn in the cancer armamentarium. However, these remarkable responses are limited to a minority of patients and indications, highlighting the need for more effective and novel approaches. Preclinical and clinical studies with immune checkpoint blockade are exploring the therapeutic potential antibody-based therapy targeting multiple inhibitory receptors. In this chapter, we discuss the current understanding of the structure, ligand specificities, function, and signaling activities of various inhibitory receptors. Additionally, we discuss the current development status of various immune checkpoint inhibitors targeting these negative immune receptors and highlight conceptual gaps in knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boon T, Old LJ (1997) Cancer tumor antigens. Curr Opin Immunol 9(5):681–683

    Article  CAS  PubMed  Google Scholar 

  2. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213

    Article  CAS  PubMed  Google Scholar 

  3. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  CAS  PubMed  Google Scholar 

  4. Azimi F, Scolyer RA, Rumcheva P, Moncrieff M, Murali R, McCarthy SW et al (2012) Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol 30(21):2678–2683

    Article  PubMed  Google Scholar 

  5. Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306

    Article  CAS  PubMed  Google Scholar 

  6. Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC, Topalian SL et al (2005) Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol 175(9):6169–6176

    Article  CAS  PubMed  Google Scholar 

  7. Fourcade J, Kudela P, Andrade Filho PA, Janjic B, Land SR, Sander C et al (2008) Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients. J Immunother 31(8):781–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zarour HM (2016) Reversing T-cell dysfunction and exhaustion in cancer. Clin Cancer Res 22(8):1856–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG et al (1987) A new member of the immunoglobulin superfamily—CTLA-4. Nature 328(6127):267–270

    Article  CAS  PubMed  Google Scholar 

  10. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP et al (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270(5238):985–988

    Article  CAS  PubMed  Google Scholar 

  11. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5):541–547

    Article  CAS  PubMed  Google Scholar 

  12. Teft WA, Kirchhof MG, Madrenas J (2006) A molecular perspective of CTLA-4 function. Annu Rev Immunol 24:65–97

    Article  CAS  PubMed  Google Scholar 

  13. Walker LSK (2015) CTLA-4 and autoimmunity: new twists in the tale. Trends Immunol 36(12):760–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Linsley PS, Clark EA, Ledbetter JA (1990) T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci U S A 87(13):5031–5035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Freeman GJ, Borriello F, Hodes RJ, Reiser H, Hathcock KS, Laszlo G et al (1993) Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science 262(5135):907–909

    Article  CAS  PubMed  Google Scholar 

  16. Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA, Lombard LA et al (1993) Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 262(5135):909–911

    Article  CAS  PubMed  Google Scholar 

  17. Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS (1996) Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 4(6):535–543

    Article  CAS  PubMed  Google Scholar 

  18. Qureshi OS, Kaur S, Hou TZ, Jeffery LE, Poulter NS, Briggs Z et al (2012) Constitutive clathrin-mediated endocytosis of CTLA-4 persists during T cell activation. J Biol Chem 287(12):9429–9440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, Zhang W et al (1998) Molecular basis of T cell inactivation by CTLA-4. Science 282(5397):2263–2266

    Article  CAS  PubMed  Google Scholar 

  20. Schneider H, Smith X, Liu H, Bismuth G, Rudd CE (2008) CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur J Immunol 38(1):40–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu H, Rudd CE, Schneider H (2001) Src kinases Fyn and Lck facilitate the accumulation of phosphorylated CTLA-4 and its association with PI-3 kinase in intracellular compartments of T-cells. Biochem Biophys Res Commun 288(3):573–578

    Article  CAS  PubMed  Google Scholar 

  22. Marengère LE, Waterhouse P, Duncan GS, Mittrücker HW, Feng GS, Mak TW (1996) Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 272(5265):1170–1173

    Article  PubMed  Google Scholar 

  23. Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Vander Heiden MG et al (2000) The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13(3):313–322

    Article  CAS  PubMed  Google Scholar 

  24. Calvo CR, Amsen D, Kruisbeek AM (1997) Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated kinase (ERK) and Jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor zeta and ZAP70. J Exp Med 186(10):1645–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schneider H, da Rocha Dias S, Hu H, Rudd CE (2001) A regulatory role for cytoplasmic YVKM motif in CTLA-4 inhibition of TCR signaling. Eur J Immunol 31(7):2042–2050

    Article  CAS  PubMed  Google Scholar 

  26. Stein PH, Fraser JD, Weiss A (1994) The cytoplasmic domain of CD28 is both necessary and sufficient for costimulation of interleukin-2 secretion and association with phosphatidylinositol 3′-kinase. Mol Cell Biol 14(5):3392–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schneider H, Rudd CE (2000) Tyrosine phosphatase SHP-2 binding to CTLA-4: absence of direct YVKM/YFIP motif recognition. Biochem Biophys Res Commun 269(1):279–283

    Article  CAS  PubMed  Google Scholar 

  28. Baroja ML, Vijayakrishnan L, Bettelli E, Darlington PJ, Chau TA, Ling V et al (2002) Inhibition of CTLA-4 function by the regulatory subunit of serine/threonine phosphatase 2A. J Immunol 168(10):5070–5078

    Article  CAS  PubMed  Google Scholar 

  29. Yokosuka T, Kobayashi W, Takamatsu M, Sakata-Sogawa K, Zeng H, Hashimoto-Tane A et al (2010) Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity 33(3):326–339

    Article  CAS  PubMed  Google Scholar 

  30. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182(2):459–465

    Article  CAS  PubMed  Google Scholar 

  31. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM et al (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1(5):405–413

    Article  CAS  PubMed  Google Scholar 

  32. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM et al (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332(6029):600–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Read S, Malmström V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192(2):295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Read S, Greenwald R, Izcue A, Robinson N, Mandelbrot D, Francisco L et al (2006) Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J Immunol 177(7):4376–4383

    Article  CAS  PubMed  Google Scholar 

  35. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192(2):303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322(5899):271–275

    Article  CAS  PubMed  Google Scholar 

  37. Shrikant P, Khoruts A, Mescher MF (1999) CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity 11(4):483–493

    Article  CAS  PubMed  Google Scholar 

  38. Quezada SA, Peggs KS, Curran MA, Allison JP (2006) CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest 116(7):1935–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kavanagh B, O’Brien S, Lee D, Hou Y, Weinberg V, Rini B et al (2008) CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion. Blood 112(4):1175–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liakou CI, Kamat A, Tang DN, Chen H, Sun J, Troncoso P et al (2008) CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci U S A 105(39):14987–14992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen H, Liakou CI, Kamat A, Pettaway C, Ward JF, Tang DN et al (2009) Anti-CTLA-4 therapy results in higher CD4+ICOShi T cell frequency and IFN-gamma levels in both nonmalignant and malignant prostate tissues. Proc Natl Acad Sci U S A 106(8):2729–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Waitz R, Solomon SB, Petre EN, Trumble AE, Fassò M, Norton L et al (2012) Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Cancer Res 72(2):430–439

    Article  CAS  PubMed  Google Scholar 

  43. Curran MA, Allison JP (2009) Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors. Cancer Res 69(19):7747–7755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F et al (2013) Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 210(9):1695–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Waight JD, Chand D, Dietrich S, Gombos R, Horn T, Gonzalez AM et al (2018) Selective FcγR co-engagement on APCs modulates the activity of therapeutic antibodies targeting T cell antigens. Cancer Cell 33(6):1033–47.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arce Vargas F, Furness AJS, Litchfield K, Joshi K, Rosenthal R, Ghorani E et al (2018) Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell 33(4):649–63.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256):1734–1736

    Article  CAS  PubMed  Google Scholar 

  48. Hurwitz AA, Yu TF, Leach DR, Allison JP (1998) CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci U S A 95(17):10067–10071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190(3):355–366

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tchekmedyian NS, Glaspy J, Korman A, Keler T, Deo Y, Davis T. MDX-010 (human anti-CTLA4): a phase I trial in malignant melanoma. Proc Am Soc Clin Oncol. 2002. Abstract 56. https://meetinglibrary.asco.org/results/Nerses%20S%20Tchekmedyian. Accessed 17 Feb 2019

  51. Wolchok JD, Neyns B, Linette G, Negrier S, Lutzky J, Thomas L et al (2010) Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol 11(2):155–164

    Article  CAS  PubMed  Google Scholar 

  52. Ansell SM, Hurvitz SA, Koenig PA, LaPlant BR, Kabat BF, Fernando D et al (2009) Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res 15(20):6446–6453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O et al (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526

    Article  CAS  PubMed  Google Scholar 

  56. Kirkwood JM, Lorigan P, Hersey P, Hauschild A, Robert C, McDermott D et al (2010) Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clin Cancer Res 16(3):1042–1048

    Article  CAS  PubMed  Google Scholar 

  57. Ribas A, Kefford R, Marshall MA, Punt CJA, Haanen JB, Marmol M et al (2013) Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol 31(5):616–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M et al (2013) Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res 1(1):32–42

    Article  CAS  PubMed  Google Scholar 

  59. Siminovitch KA, Neel BG (1998) Regulation of B cell signal transduction by SH2-containing protein-tyrosine phosphatases. Semin Immunol 10(4):329–347

    Article  CAS  PubMed  Google Scholar 

  60. Tajan M, de Rocca Serra A, Valet P, Edouard T, Yart A (2015) SHP2 sails from physiology to pathology. Eur J Med Genet 58(10):509–525

    Article  PubMed  Google Scholar 

  61. Chan G, Kalaitzidis D, Neel BG (2008) The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev 27(2):179–192

    Article  CAS  PubMed  Google Scholar 

  62. Prahallad A, Heynen GJJE, Germano G, Willems SM, Evers B, Vecchione L et al (2015) PTPN11 is a central node in intrinsic and acquired resistance to targeted cancer drugs. Cell Rep 12(12):1978–1985

    Article  CAS  PubMed  Google Scholar 

  63. Rota G, Niogret C, Dang AT, Barros CR, Fonta NP, Alfei F et al (2018) Shp-2 is dispensable for establishing T cell exhaustion and for PD-1 signaling in vivo. Cell Rep 23(1):39–49

    Article  CAS  PubMed  Google Scholar 

  64. Loke P, Allison JP (2003) PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci U S A 100(9):5336–5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3):261–268

    Article  CAS  PubMed  Google Scholar 

  66. Tseng SY, Otsuji M, Gorski K, Huang X, Slansky JE, Pai SI et al (2001) B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med 193(7):839–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jin H-T, Anderson AC, Tan WG, West EE, Ha S-J, Araki K et al (2010) Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A 107(33):14733–14738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ et al (2003) Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 33(10):2706–2716

    Article  CAS  PubMed  Google Scholar 

  69. Fourcade J, Kudela P, Sun Z, Shen H, Land SR, Lenzner D et al (2009) PD-1 is a regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma patients. J Immunol 182(9):5240–5249

    Article  CAS  PubMed  Google Scholar 

  70. Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E et al (2014) PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest 124(5):2246–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1(4):193–199

    Article  CAS  PubMed  Google Scholar 

  72. Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 5(230):ra46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Park BV, Freeman ZT, Ghasemzadeh A, Chattergoon MA, Rutebemberwa A, Steigner J et al (2016) TGFβ1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer. Cancer Discov 6(12):1366–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK et al (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206(13):3015–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN et al (2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 6:6692

    Article  CAS  PubMed  Google Scholar 

  76. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209(6):1201–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zinselmeyer BH, Heydari S, Sacristán C, Nayak D, Cammer M, Herz J et al (2013) PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J Exp Med 210(4):757–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25(21):9543–9553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA et al (2017) T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355(6332):1428–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yao H, Wang H, Li C, Fang J-Y, Xu J (2018) Cancer cell-intrinsic PD-1 and implications in combinatorial immunotherapy. Front Immunol 9:1774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang N-AAS, Andrews MC et al (2017) Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170(6):1120–33.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Das R, Verma R, Sznol M, Boddupalli CS, Gettinger SN, Kluger H et al (2015) Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J Immunol 194(3):950–959

    Article  CAS  PubMed  Google Scholar 

  84. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu C, Peng W, Xu C, Lou Y, Zhang M, Wargo JA et al (2013) BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 19(2):393–403

    Article  CAS  PubMed  Google Scholar 

  87. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235

    Article  CAS  PubMed  Google Scholar 

  88. Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT et al (2016) Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 6(2):202–216

    Article  CAS  PubMed  Google Scholar 

  89. Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q et al (2016) Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167(2):397–404.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A et al (2017) Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 7(2):188–201

    Article  CAS  PubMed  Google Scholar 

  92. Vo DD, Prins RM, Begley JL, Donahue TR, Morris LF, Bruhn KW et al (2009) Enhanced antitumor activity induced by adoptive T-cell transfer and adjunctive use of the histone deacetylase inhibitor LAQ824. Cancer Res 69(22):8693–8699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Thommen DS, Schreiner J, Müller P, Herzig P, Roller A, Belousov A et al (2015) Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors. Cancer Immunol Res 3(12):1344–1355

    Article  CAS  PubMed  Google Scholar 

  94. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499

    Article  CAS  PubMed  Google Scholar 

  95. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG et al (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR et al (2017) IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940

    Article  PubMed  PubMed Central  Google Scholar 

  97. Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S et al (2017) T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545(7652):60–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC et al (2016) Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537(7620):417–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T et al (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415(6871):536–541

    Article  CAS  PubMed  Google Scholar 

  100. McIntire JJ, Umetsu SE, Akbari O, Potter M, Kuchroo VK, Barsh GS et al (2001) Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat Immunol 2(12):1109–1116

    Article  CAS  PubMed  Google Scholar 

  101. van de Weyer PS, Muehlfeit M, Klose C, Bonventre JV, Walz G, Kuehn EW (2006) A highly conserved tyrosine of Tim-3 is phosphorylated upon stimulation by its ligand galectin-9. Biochem Biophys Res Commun 351(2):571–576

    Article  PubMed  CAS  Google Scholar 

  102. Cao E, Zang X, Ramagopal UA, Mukhopadhaya A, Fedorov A, Fedorov E et al (2007) T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface. Immunity 26(3):311–321

    Article  CAS  PubMed  Google Scholar 

  103. DeKruyff RH, Bu X, Ballesteros A, Santiago C, Chim Y-LE, Lee H-H et al (2010) T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 184(4):1918–1930

    Article  CAS  PubMed  Google Scholar 

  104. Lee J, Su EW, Zhu C, Hainline S, Phuah J, Moroco JA et al (2011) Phosphotyrosine-dependent coupling of Tim-3 to T-cell receptor signaling pathways. Mol Cell Biol 31(19):3963–3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gandhi AK, Kim WM, Sun Z-YJ, Huang Y-H, Bonsor DA, Sundberg EJ et al (2018) High resolution X-ray and NMR structural study of human T-cell immunoglobulin and mucin domain containing protein-3. Sci Rep 8(1):17512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Huang Y-H, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A et al (2015) CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517(7534):386–390

    Article  CAS  PubMed  Google Scholar 

  107. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H et al (2012) Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 13(9):832–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ et al (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6(12):1245–1252

    Article  CAS  PubMed  Google Scholar 

  109. Dorfman DM, Hornick JL, Shahsafaei A, Freeman GJ (2010) The phosphatidylserine receptors, T cell immunoglobulin mucin proteins 3 and 4, are markers of histiocytic sarcoma and other histiocytic and dendritic cell neoplasms. Hum Pathol 41(10):1486–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sabatos-Peyton CA, Nevin J, Brock A, Venable JD, Tan DJ, Kassam N et al (2018) Blockade of Tim-3 binding to phosphatidylserine and CEACAM1 is a shared feature of anti-Tim-3 antibodies that have functional efficacy. Oncoimmunology 7(2):e1385690

    Article  PubMed  Google Scholar 

  111. Rangachari M, Zhu C, Sakuishi K, Xiao S, Karman J, Chen A et al (2012) Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 18(9):1394–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, Long BR et al (2008) Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J Exp Med 205(12):2763–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C et al (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207(10):2175–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10):2187–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gautron A-S, Dominguez-Villar M, de Marcken M, Hafler DA (2014) Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells. Eur J Immunol 44(9):2703–2711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kurtulus S, Sakuishi K, Ngiow S-F, Joller N, Tan DJ, Teng MWL et al (2015) TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 125(11):4053–4062

    Article  PubMed  PubMed Central  Google Scholar 

  117. Liu Z, McMichael EL, Shayan G, Li J, Chen K, Srivastava R et al (2018) Novel effector phenotype of Tim-3+ regulatory T cells leads to enhanced suppressive function in head and neck cancer patients. Clin Cancer Res 24(18):4529–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kurtulus S, Madi A, Escobar G, Klapholz M, Nyman J, Christian E et al (2019) Checkpoint blockade immunotherapy induces dynamic changes in PD-1-CD8+ tumor-infiltrating T cells. Immunity 50(1):181–194. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McMahan RH, Golden-Mason L, Nishimura MI, McMahon BJ, Kemper M, Allen TM et al (2010) Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. J Clin Invest 120(12):4546–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nebbia G, Peppa D, Schurich A, Khanna P, Singh HD, Cheng Y et al (2012) Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLoS One 7(10):e47648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fourcade J, Sun Z, Pagliano O, Chauvin J-M, Sander C, Janjic B et al (2014) PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8+ T cells induced by melanoma vaccines. Cancer Res 74(4):1045–1055

    Article  CAS  PubMed  Google Scholar 

  122. Gao X, Zhu Y, Li G, Huang H, Zhang G, Wang F et al (2012) TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One 7(2):e30676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang L, Anderson DE, Kuchroo J, Hafler DA (2008) Lack of TIM-3 immunoregulation in multiple sclerosis. J Immunol 180(7):4409–4414

    Article  CAS  PubMed  Google Scholar 

  124. de Mingo Pulido Á, Gardner A, Hiebler S, Soliman H, Rugo HS, Krummel MF et al (2018) TIM-3 regulates CD103+ dendritic cell function and response to chemotherapy in breast cancer. Cancer Cell 33(1):60–74.e6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Weiss GJ (2017) A phase 1 study of TSR-022, an anti-TIM-3 monoclonal antibody in patients(pts) with advanced solid tumors. J Immun. http://bit.ly/2y9uMMI

  126. Davar D (2018) A phase 1 study of TSR-022, an anti-TIM-3 monoclonal antibody, in combination with TSR-042 (anti-PD-1) in patients with colorectal cancer and post-PD-1 NSCLC and melanoma. J Immun Cancer. https://higherlogicdownload.s3.amazonaws.com/SITCANCER/7aaf41a8-2b65-4783-b86e-d48d26ce14f8/UploadedImages/Annual_Meeting_2018/Annual_Meeting/Abstracts/Abstract_Book_Edited_11_20.pdf

  127. Mendelsohn CL, Wimmer E, Racaniello VR (1989) Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56(5):855–865

    Article  CAS  PubMed  Google Scholar 

  128. Casado JG, Pawelec G, Morgado S, Sanchez-Correa B, Delgado E, Gayoso I et al (2009) Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunol Immunother 58(9):1517–1526

    Article  CAS  PubMed  Google Scholar 

  129. Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A et al (2009) The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A 106(42):17858–17863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B et al (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10(1):48–57

    Article  CAS  PubMed  Google Scholar 

  131. Levin SD, Taft DW, Brandt CS, Bucher C, Howard ED, Chadwick EM et al (2011) Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur J Immunol 41(4):902–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y et al (2014) The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26(6):923–937

    Article  CAS  PubMed  Google Scholar 

  133. Chauvin J-M, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C et al (2015) TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J Clin Invest 125(5):2046–2058

    Article  PubMed  PubMed Central  Google Scholar 

  134. Zhu Y, Paniccia A, Schulick AC, Chen W, Koenig MR, Byers JT et al (2016) Identification of CD112R as a novel checkpoint for human T cells. J Exp Med 213(2):167–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Boles KS, Vermi W, Facchetti F, Fuchs A, Wilson TJ, Diacovo TG et al (2009) A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur J Immunol 39(3):695–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fourcade J, Sun Z, Chauvin J-M, Ka M, Davar D, Pagliano O et al (2018) CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight 3(14):121157

    Article  PubMed  Google Scholar 

  137. Roman Aguilera A, Lutzky VP, Mittal D, Li X-Y, Stannard K, Takeda K et al (2018) CD96 targeted antibodies need not block CD96-CD155 interactions to promote NK cell anti-metastatic activity. Oncoimmunology 7(5):e1424677

    Article  PubMed  PubMed Central  Google Scholar 

  138. Liu S, Zhang H, Li M, Hu D, Li C, Ge B et al (2013) Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ 20(3):456–464

    Article  CAS  PubMed  Google Scholar 

  139. Li M, Xia P, Du Y, Liu S, Huang G, Chen J et al (2014) T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-γ production of natural killer cells via β-arrestin 2-mediated negative signaling. J Biol Chem 289(25):17647–17657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD et al (2011) Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol 186(3):1338–1342

    Article  CAS  PubMed  Google Scholar 

  141. Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E et al (1990) LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med 171(5):1393–1405

    Article  CAS  PubMed  Google Scholar 

  142. Bruniquel D, Borie N, Triebel F (1997) Genomic organization of the human LAG-3/CD4 locus. Immunogenetics 47(1):96–98

    Article  CAS  PubMed  Google Scholar 

  143. Workman CJ, Vignali DAA (2003) The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur J Immunol 33(4):970–979

    Article  CAS  PubMed  Google Scholar 

  144. Baixeras E, Huard B, Miossec C, Jitsukawa S, Martin M, Hercend T et al (1992) Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J Exp Med 176(2):327–337

    Article  CAS  PubMed  Google Scholar 

  145. Huard B, Gaulard P, Faure F, Hercend T, Triebel F (1994) Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand. Immunogenetics 39(3):213–217

    Article  CAS  PubMed  Google Scholar 

  146. Workman CJ, Wang Y, El KKC, Pardoll DM, Murray PJ, Drake CG et al (2009) LAG-3 regulates plasmacytoid dendritic cell homeostasis. J Immunol 182(4):1885–1891

    Article  CAS  PubMed  Google Scholar 

  147. Kisielow M, Kisielow J, Capoferri-Sollami G, Karjalainen K (2005) Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur J Immunol 35(7):2081–2088

    Article  CAS  PubMed  Google Scholar 

  148. Fleury S, Lamarre D, Meloche S, Ryu SE, Cantin C, Hendrickson WA et al (1991) Mutational analysis of the interaction between CD4 and class II MHC: class II antigens contact CD4 on a surface opposite the gp120-binding site. Cell 66(5):1037–1049

    Article  CAS  PubMed  Google Scholar 

  149. Moebius U, Pallai P, Harrison SC, Reinherz EL (1993) Delineation of an extended surface contact area on human CD4 involved in class II major histocompatibility complex binding. Proc Natl Acad Sci U S A 90(17):8259–8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Huard B, Tournier M, Hercend T, Triebel F, Faure F (1994) Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur J Immunol 24(12):3216–3221

    Article  CAS  PubMed  Google Scholar 

  151. Workman CJ, Rice DS, Dugger KJ, Kurschner C, Vignali DAA (2002) Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur J Immunol 32(8):2255–2263

    Article  CAS  PubMed  Google Scholar 

  152. Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J et al (2019) Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell 176(1-2):334–47.e12

    Article  CAS  PubMed  Google Scholar 

  153. Zhang Y, Qiao H-X, Zhou Y-T, Hong L, Chen J-H (2018) Fibrinogen-like-protein 1 promotes the invasion and metastasis of gastric cancer and is associated with poor prognosis. Mol Med Report 18(2):1465–1472

    CAS  Google Scholar 

  154. Li N, Wang Y, Forbes K, Vignali KM, Heale BS, Saftig P et al (2007) Metalloproteases regulate T-cell proliferation and effector function via LAG-3. EMBO J 26(2):494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hannier S, Tournier M, Bismuth G, Triebel F (1998) CD3/TCR complex-associated lymphocyte activation gene-3 molecules inhibit CD3/TCR signaling. J Immunol 161(8):4058–4065

    CAS  PubMed  Google Scholar 

  156. Workman CJ, Dugger KJ, Vignali DAA (2002) Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol 169(10):5392–5395

    Article  CAS  PubMed  Google Scholar 

  157. Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L et al (2008) Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol 180(9):5916–5926

    Article  CAS  PubMed  Google Scholar 

  158. Ascierto PA, Melero I, Bhatia S, Bono P, Sanborn RE, Lipson EJ et al (2017) Initial efficacy of anti-lymphocyte activation gene-3 (anti-LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti–PD-1/PD-L1 therapy. J Clin Oncol 35(15_suppl):9520–9520

    Article  Google Scholar 

  159. Lakhani N (2018) The anti–LAG-3 antibody MK-4280 as monotherapy and in combination with pembrolizumab for advanced solid tumors: first-in-human phase 1 dose-finding study. J Immunother Cancer. https://higherlogicdownload.s3.amazonaws.com/SITCANCER/7aaf41a8-2b65-4783-b86e-d48d26ce14f8/UploadedImages/Annual_Meeting_2018/Annual_Meeting/Abstracts/Abstract_Book_Edited_11_20.pdf

  160. Hong DS, Schoffski P, Calvo A, Sarantopoulos J, Ochoa De Olza M, Carvajal RD et al (2018) Phase I/II study of LAG525 ± spartalizumab (PDR001) in patients (pts) with advanced malignancies. J Clin Oncol 36(15_suppl):3012–3012

    Article  Google Scholar 

  161. Sharma S (2018) Initial results from a phase 1a/b study of etigilimab (OMP-313M32), an anti-T cell immunoreceptor with Ig and ITIM domains (TIGIT) antibody, in advanced solid tumors. J Immunother Cancer. https://higherlogicdownload.s3.amazonaws.com/SITCANCER/7aaf41a8-2b65-4783-b86e-d48d26ce14f8/UploadedImages/Annual_Meeting_2018/Annual_Meeting/Abstracts/Abstract_Book_Edited_11_20.pdf

  162. Compaan DM, Gonzalez LC, Tom I, Loyet KM, Eaton D, Hymowitz SG (2005) Attenuating lymphocyte activity: the crystal structure of the BTLA-HVEM complex. J Biol Chem 280(47):39553–39561

    Article  CAS  PubMed  Google Scholar 

  163. Cheung TC, Humphreys IR, Potter KG, Norris PS, Shumway HM, Tran BR et al (2005) Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Proc Natl Acad Sci U S A 102(37):13218–13223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O’Connell S et al (2014) VISTA is an immune checkpoint molecule for human T cells. Cancer Res 74(7):1924–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Xu W, Hiếu T, Malarkannan S, Wang L (2018) The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation. Cell Mol Immunol 15(5):438–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wesolowski R, Markowitz J, Carson WE (2013) Myeloid derived suppressor cells - a new therapeutic target in the treatment of cancer. J Immunother Cancer 1:10

    Article  PubMed  PubMed Central  Google Scholar 

  167. Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P et al (2014) VISTA regulates the development of protective antitumor immunity. Cancer Res 74(7):1933–1944

    Article  PubMed  CAS  Google Scholar 

  168. Sedy JR, Gavrieli M, Potter KG, Hurchla MA, Lindsley RC, Hildner K et al (2005) B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol 6(1):90–98

    Article  CAS  PubMed  Google Scholar 

  169. Hurchla MA, Sedy JR, Gavrieli M, Drake CG, Murphy TL, Murphy KM (2005) B and T lymphocyte attenuator exhibits structural and expression polymorphisms and is highly induced in anergic CD4+ T cells. J Immunol 174(6):3377–3385

    Article  CAS  PubMed  Google Scholar 

  170. Quan L, Lan X, Meng Y, Guo X, Guo Y, Zhao L et al (2018) BTLA marks a less cytotoxic T-cell subset in diffuse large B-cell lymphoma with high expression of checkpoints. Exp Hematol 60:47–56.e1

    Article  CAS  PubMed  Google Scholar 

  171. Zhao Q, Huang Z-L, He M, Gao Z, Kuang D-M (2016) BTLA identifies dysfunctional PD-1-expressing CD4+ T cells in human hepatocellular carcinoma. Oncoimmunology 5(12):e1254855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Fourcade J, Sun Z, Pagliano O, Guillaume P, Luescher IF, Sander C et al (2012) CD8(+) T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res 72(4):887–896

    Article  CAS  PubMed  Google Scholar 

  173. Hurchla MA, Sedy JR, Murphy KM (2007) Unexpected role of B and T lymphocyte attenuator in sustaining cell survival during chronic allostimulation. J Immunol 178(10):6073–6082

    Article  CAS  PubMed  Google Scholar 

  174. Steinberg MW, Turovskaya O, Shaikh RB, Kim G, McCole DF, Pfeffer K et al (2008) A crucial role for HVEM and BTLA in preventing intestinal inflammation. J Exp Med 205(6):1463–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Steinberg MW, Huang Y, Wang-Zhu Y, Ware CF, Cheroutre H, Kronenberg M (2013) BTLA interaction with HVEM expressed on CD8(+) T cells promotes survival and memory generation in response to a bacterial infection. PLoS One 8(10):e77992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Radvanyi LG, Bernatchez C, Zhang M, Fox PS, Miller P, Chacon J et al (2012) Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res 18(24):6758–6770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Haymaker CL, Wu RC, Ritthipichai K, Bernatchez C, Forget M-A, Chen JQ et al (2015) BTLA marks a less-differentiated tumor-infiltrating lymphocyte subset in melanoma with enhanced survival properties. Oncoimmunology 4(8):e1014246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD et al (2015) Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci U S A 112(21):6682–6687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Li N, Xu W, Yuan Y, Ayithan N, Imai Y, Wu X et al (2017) Immune-checkpoint protein VISTA critically regulates the IL-23/IL-17 inflammatory axis. Sci Rep 7(1):1485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Wyant T, Bang YL, Sosman J, Daud A, Meric-Bernstam F, Garcia-Corbacho J et al (2018) Phase 1 study of CA-170, a first-in-class, orally available, small molecule immune checkpoint inhibitor (ICI) dually targeting VISTA and PDL1, in patients with advanced solid tumors or lymphomas. J Immunother Cancer 6(Suppl 1):114

    Google Scholar 

Download references

Acknowledgments

Funding: This work was supported by an academy industry award from the Melanoma Research Alliance and Merck (H.M.Z.), NCI grant P50 CA121973 (J.M.K.), a Cancer Center Foundation Genentech BioOncology™ Young Investigator Award, and a grant from the Harry J Lloyd Trust (D.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diwakar Davar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Davar, D., Zarour, H.M. (2020). Immunological Targets for Immunotherapy: Inhibitory T Cell Receptors. In: Thurin, M., Cesano, A., Marincola, F. (eds) Biomarkers for Immunotherapy of Cancer. Methods in Molecular Biology, vol 2055. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9773-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9773-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9772-5

  • Online ISBN: 978-1-4939-9773-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics