Skip to main content

The CRISPR System and Cancer Immunotherapy Biomarkers

  • Protocol
  • First Online:
Biomarkers for Immunotherapy of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2055))

Abstract

Recent advances in cancer immunotherapy have shed new light on the possibility to cure most, if not all, cancer patients with further development of various treatment options. The emergency of a new genome editing tool, the clustered regularly interspaced short palindromic repeats (CRISPR) technology, revolutionized the biomedical research field. We envision application of the CRISPR technology in cancer research, diagnosis, and therapy will markedly speed up the development of new treatment options for cancer patients. The CRISPR system and its applications in biomedical research will be discussed with an emphasis on cancer immunotherapy and biomarker development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCarthy EF (2006) The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 26:154–158

    PubMed  PubMed Central  Google Scholar 

  2. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256):1734–1736

    Article  CAS  PubMed  Google Scholar 

  3. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11(2):141–151

    Article  CAS  PubMed  Google Scholar 

  4. Nishimura H, Minato N, Nakano T, Honjo T (1998) Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int Immunol 10(10):1563–1572

    Article  CAS  PubMed  Google Scholar 

  5. Lander ES (2016) The heroes of CRISPR. Cell 164(1–2):18–28. https://doi.org/10.1016/j.cell.2015.12.041

    Article  CAS  PubMed  Google Scholar 

  6. Morange M (2015) What history tells us XXXVII. CRISPR-Cas: the discovery of an immune system in prokaryotes. J Biosci 40(2):221–223

    Article  PubMed  Google Scholar 

  7. Morange M (2015) What history tells us XXXIX. CRISPR-Cas: from a prokaryotic immune system to a universal genome editing tool. J Biosci 40(5):829–832

    Article  PubMed  Google Scholar 

  8. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mojica FJ, Ferrer C, Juez G, Rodriguez-Valera F (1995) Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 17(1):85–93

    Article  CAS  PubMed  Google Scholar 

  10. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(Pt 3):653–663. https://doi.org/10.1099/mic.0.27437-0

    Article  CAS  PubMed  Google Scholar 

  11. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182. https://doi.org/10.1007/s00239-004-0046-3

    Article  CAS  PubMed  Google Scholar 

  12. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(Pt 8):2551–2561. https://doi.org/10.1099/mic.0.28048-0

    Article  CAS  PubMed  Google Scholar 

  13. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39):E2579–E2586. https://doi.org/10.1073/pnas.1208507109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31(3):230–232. https://doi.org/10.1038/nbt.2507

    Article  CAS  PubMed  Google Scholar 

  18. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229. https://doi.org/10.1038/nbt.2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wyman C, Kanaar R (2006) DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 40:363–383. https://doi.org/10.1146/annurev.genet.40.110405.090451

    Article  CAS  PubMed  Google Scholar 

  21. Sharma R, Anguela XM, Doyon Y, Wechsler T, DeKelver RC, Sproul S, Paschon DE, Miller JC, Davidson RJ, Shivak D, Zhou S, Rieders J, Gregory PD, Holmes MC, Rebar EJ, High KA (2015) In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 126(15):1777–1784. https://doi.org/10.1182/blood-2014-12-615492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nishimasu H, Cong L, Yan WX, Ran FA, Zetsche B, Li Y, Kurabayashi A, Ishitani R, Zhang F, Nureki O (2015) Crystal structure of Staphylococcus aureus Cas9. Cell 162(5):1113–1126. https://doi.org/10.1016/j.cell.2015.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389. https://doi.org/10.1016/j.cell.2013.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451. https://doi.org/10.1016/j.cell.2013.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, E PRI, Lin S, Kiani S, Guzman CD, Wiegand DJ, Ter-Ovanesyan D, Braff JL, Davidsohn N, Housden BE, Perrimon N, Weiss R, Aach J, Collins JJ, Church GM (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12(4):326–328. https://doi.org/10.1038/nmeth.3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588. https://doi.org/10.1038/nature14136

    Article  CAS  PubMed  Google Scholar 

  28. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358(6366):1019–1027. https://doi.org/10.1126/science.aaq0180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F (2017) RNA targeting with CRISPR-Cas13. Nature 550(7675):280–284. https://doi.org/10.1038/nature24049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, Lombardo A (2016) Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167(1):219–232 e214. https://doi.org/10.1016/j.cell.2016.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cano-Rodriguez D, Gjaltema RA, Jilderda LJ, Jellema P, Dokter-Fokkens J, Ruiters MH, Rots MG (2016) Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat Commun 7:12284. https://doi.org/10.1038/ncomms12284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J (2016) CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7(29):46545–46556. https://doi.org/10.18632/oncotarget.10234

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33(5):510–517. https://doi.org/10.1038/nbt.3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M, Maehr R (2015) Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 12(5):401–403. https://doi.org/10.1038/nmeth.3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kwon DY, Zhao YT, Lamonica JM, Zhou Z (2017) Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nat Commun 8:15315. https://doi.org/10.1038/ncomms15315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159(3):635–646. https://doi.org/10.1016/j.cell.2014.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A∗T to G∗C in genomic DNA without DNA cleavage. Nature 551(7681):464–471. https://doi.org/10.1038/nature24644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6):569–576. https://doi.org/10.1038/nbt.2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32(6):577–582. https://doi.org/10.1038/nbt.2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Evers B, Jastrzebski K, Heijmans JP, Grernrum W, Beijersbergen RL, Bernards R (2016) CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol 34(6):631–633. https://doi.org/10.1038/nbt.3536

    Article  CAS  PubMed  Google Scholar 

  41. Munoz DM, Cassiani PJ, Li L, Billy E, Korn JM, Jones MD, Golji J, Ruddy DA, Yu K, McAllister G, DeWeck A, Abramowski D, Wan J, Shirley MD, Neshat SY, Rakiec D, de Beaumont R, Weber O, Kauffmann A, McDonald ER 3rd, Keen N, Hofmann F, Sellers WR, Schmelzle T, Stegmeier F, Schlabach MR (2016) CRISPR screens provide a comprehensive assessment of Cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov 6(8):900–913. https://doi.org/10.1158/2159-8290.CD-16-0178

    Article  CAS  PubMed  Google Scholar 

  42. Aguirre AJ, Meyers RM, Weir BA, Vazquez F, Zhang CZ, Ben-David U, Cook A, Ha G, Harrington WF, Doshi MB, Kost-Alimova M, Gill S, Xu H, Ali LD, Jiang G, Pantel S, Lee Y, Goodale A, Cherniack AD, Oh C, Kryukov G, Cowley GS, Garraway LA, Stegmaier K, Roberts CW, Golub TR, Meyerson M, Root DE, Tsherniak A, Hahn WC (2016) Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov 6(8):914–929. https://doi.org/10.1158/2159-8290.CD-16-0154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, Mis M, Zimmermann M, Fradet-Turcotte A, Sun S, Mero P, Dirks P, Sidhu S, Roth FP, Rissland OS, Durocher D, Angers S, Moffat J (2015) High-resolution CRISPR screens reveal fitness genes and genotype-specific Cancer liabilities. Cell 163(6):1515–1526. https://doi.org/10.1016/j.cell.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  44. Tzelepis K, Koike-Yusa H, De Braekeleer E, Li Y, Metzakopian E, Dovey OM, Mupo A, Grinkevich V, Li M, Mazan M, Gozdecka M, Ohnishi S, Cooper J, Patel M, McKerrell T, Chen B, Domingues AF, Gallipoli P, Teichmann S, Ponstingl H, McDermott U, Saez-Rodriguez J, Huntly BJP, Iorio F, Pina C, Vassiliou GS, Yusa K (2016) A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep 17(4):1193–1205. https://doi.org/10.1016/j.celrep.2016.09.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang T, Yu H, Hughes NW, Liu B, Kendirli A, Klein K, Chen WW, Lander ES, Sabatini DM (2017) Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic ras. Cell 168(5):890–903 e815. https://doi.org/10.1016/j.cell.2017.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steinhart Z, Pavlovic Z, Chandrashekhar M, Hart T, Wang X, Zhang X, Robitaille M, Brown KR, Jaksani S, Overmeer R, Boj SF, Adams J, Pan J, Clevers H, Sidhu S, Moffat J, Angers S (2017) Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med 23(1):60–68. https://doi.org/10.1038/nm.4219

    Article  CAS  PubMed  Google Scholar 

  47. Zhan T, Boutros M (2016) Towards a compendium of essential genes - from model organisms to synthetic lethality in cancer cells. Crit Rev Biochem Mol Biol 51(2):74–85. https://doi.org/10.3109/10409238.2015.1117053

    Article  CAS  PubMed  Google Scholar 

  48. Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM, Bui CT, Li PJ, Diolaiti ME, Ashworth A, Marson A (2018) Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175:1958. https://doi.org/10.1016/j.cell.2018.10.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK, Cam M, Gartner JJ, Jia L, Steinberg SM, Yamamoto TN, Merchant AS, Mehta GU, Chichura A, Shalem O, Tran E, Eil R, Sukumar M, Guijarro EP, Day CP, Robbins P, Feldman S, Merlino G, Zhang F, Restifo NP (2017) Identification of essential genes for cancer immunotherapy. Nature 548(7669):537–542. https://doi.org/10.1038/nature23477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kearney CJ, Vervoort SJ, Hogg SJ, Ramsbottom KM, Freeman AJ, Lalaoui N, Pijpers L, Michie J, Brown KK, Knight DA, Sutton V, Beavis PA, Voskoboinik I, Darcy PK, Silke J, Trapani JA, Johnstone RW, Oliaro J (2018) Tumor immune evasion arises through loss of TNF sensitivity. Sci Immunol 3(23):eaar3451. https://doi.org/10.1126/sciimmunol.aar3451

    Article  PubMed  Google Scholar 

  51. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR, Anttila V, Xu H, Zang C, Farh K, Ripke S, Day FR, ReproGen C, Schizophrenia Working Group of the Psychiatric Genomics C, Consortium R, Purcell S, Stahl E, Lindstrom S, Perry JR, Okada Y, Raychaudhuri S, Daly MJ, Patterson N, Neale BM, Price AL (2015) Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet 47(11):1228–1235. https://doi.org/10.1038/ng.3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sanjana NE, Wright J, Zheng K, Shalem O, Fontanillas P, Joung J, Cheng C, Regev A, Zhang F (2016) High-resolution interrogation of functional elements in the noncoding genome. Science 353(6307):1545–1549. https://doi.org/10.1126/science.aaf7613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR, Perez EM, Kane M, Cleary B, Lander ES, Engreitz JM (2016) Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354(6313):769–773. https://doi.org/10.1126/science.aag2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao Y, Xiong X, Wong S, Charles EJ, Lim WA, Qi LS (2016) Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat Methods 13(12):1043–1049. https://doi.org/10.1038/nmeth.4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gjaltema RAF, Schulz EG (2018) CRISPR/dCas9 switch systems for temporal transcriptional control. Methods Mol Biol 1767:167–185. https://doi.org/10.1007/978-1-4939-7774-1_8

    Article  CAS  PubMed  Google Scholar 

  56. Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA, Schramm K, Belic J, Jones DT, Tschida B, Moriarity B, Largaespada D, Roussel MF, Korshunov A, Reifenberger G, Pfister SM, Lichter P, Kawauchi D, Gronych J (2015) Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun 6:7391. https://doi.org/10.1038/ncomms8391

    Article  CAS  PubMed  Google Scholar 

  57. Walter DM, Venancio OS, Buza EL, Tobias JW, Deshpande C, Gudiel AA, Kim-Kiselak C, Cicchini M, Yates TJ, Feldser DM (2017) Systematic in vivo inactivation of chromatin-regulating enzymes identifies Setd2 as a potent tumor suppressor in lung adenocarcinoma. Cancer Res 77(7):1719–1729. https://doi.org/10.1158/0008-5472.CAN-16-2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21(3):256–262. https://doi.org/10.1038/nm.3802

    Article  CAS  PubMed  Google Scholar 

  59. Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, Sachs N, Overmeer RM, Offerhaus GJ, Begthel H, Korving J, van de Wetering M, Schwank G, Logtenberg M, Cuppen E, Snippert HJ, Medema JP, Kops GJ, Clevers H (2015) Sequential cancer mutations in cultured human intestinal stem cells. Nature 521(7550):43–47. https://doi.org/10.1038/nature14415

    Article  CAS  PubMed  Google Scholar 

  60. Ogawa J, Pao GM, Shokhirev MN, Verma IM (2018) Glioblastoma model using human cerebral organoids. Cell Rep 23(4):1220–1229. https://doi.org/10.1016/j.celrep.2018.03.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oldrini B, Curiel-Garcia A, Marques C, Matia V, Uluckan O, Grana-Castro O, Torres-Ruiz R, Rodriguez-Perales S, Huse JT, Squatrito M (2018) Somatic genome editing with the RCAS-TVA-CRISPR-Cas9 system for precision tumor modeling. Nat Commun 9(1):1466. https://doi.org/10.1038/s41467-018-03731-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Torres R, Martin MC, Garcia A, Cigudosa JC, Ramirez JC, Rodriguez-Perales S (2014) Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat Commun 5:3964. https://doi.org/10.1038/ncomms4964

    Article  CAS  PubMed  Google Scholar 

  63. Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E, Lowe SW, Ventura A (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516(7531):423–427. https://doi.org/10.1038/nature13902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lagutina IV, Valentine V, Picchione F, Harwood F, Valentine MB, Villarejo-Balcells B, Carvajal JJ, Grosveld GC (2015) Modeling of the human alveolar rhabdomyosarcoma Pax3-Foxo1 chromosome translocation in mouse myoblasts using CRISPR-Cas9 nuclease. PLoS Genet 11(2):e1004951. https://doi.org/10.1371/journal.pgen.1004951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Engelholm LH, Riaz A, Serra D, Dagnaes-Hansen F, Johansen JV, Santoni-Rugiu E, Hansen SH, Niola F, Frodin M (2017) CRISPR/Cas9 engineering of adult mouse liver demonstrates that the Dnajb1-Prkaca gene fusion is sufficient to induce tumors resembling Fibrolamellar hepatocellular carcinoma. Gastroenterology 153(6):1662–1673 e1610. https://doi.org/10.1053/j.gastro.2017.09.008

    Article  CAS  PubMed  Google Scholar 

  66. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2):440–455. https://doi.org/10.1016/j.cell.2014.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514(7522):380–384. https://doi.org/10.1038/nature13589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maresch R, Mueller S, Veltkamp C, Ollinger R, Friedrich M, Heid I, Steiger K, Weber J, Engleitner T, Barenboim M, Klein S, Louzada S, Banerjee R, Strong A, Stauber T, Gross N, Geumann U, Lange S, Ringelhan M, Varela I, Unger K, Yang F, Schmid RM, Vassiliou GS, Braren R, Schneider G, Heikenwalder M, Bradley A, Saur D, Rad R (2016) Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun 7:10770. https://doi.org/10.1038/ncomms10770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schokrpur S, Hu J, Moughon DL, Liu P, Lin LC, Hermann K, Mangul S, Guan W, Pellegrini M, Xu H, Wu L (2016) CRISPR-mediated VHL knockout generates an improved model for metastatic renal cell carcinoma. Sci Rep 6:29032. https://doi.org/10.1038/srep29032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155(7):1479–1491. https://doi.org/10.1016/j.cell.2013.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen B, Hu J, Almeida R, Liu H, Balakrishnan S, Covill-Cooke C, Lim WA, Huang B (2016) Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res 44(8):e75. https://doi.org/10.1093/nar/gkv1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34(5):528–530. https://doi.org/10.1038/nbt.3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ma H, Tu LC, Naseri A, Chung YC, Grunwald D, Zhang S, Pederson T (2018) CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat Methods 15(11):928–931. https://doi.org/10.1038/s41592-018-0174-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, Ferrante T, Ma D, Donghia N, Fan M, Daringer NM, Bosch I, Dudley DM, O'Connor DH, Gehrke L, Collins JJ (2016) Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165(5):1255–1266. https://doi.org/10.1016/j.cell.2016.04.059

    Article  CAS  PubMed  Google Scholar 

  75. Guk K, Keem JO, Hwang SG, Kim H, Kang T, Lim EK, Jung J (2017) A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosens Bioelectron 95:67–71. https://doi.org/10.1016/j.bios.2017.04.016

    Article  CAS  PubMed  Google Scholar 

  76. Deng W, Shi X, Tjian R, Lionnet T, Singer RH (2015) CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc Natl Acad Sci U S A 112(38):11870–11875. https://doi.org/10.1073/pnas.1515692112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356(6336):438–442. https://doi.org/10.1126/science.aam9321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360(6387):439–444. https://doi.org/10.1126/science.aaq0179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, Kellner MJ, Tan AL, Paul LM, Parham LA, Garcia KF, Barnes KG, Chak B, Mondini A, Nogueira ML, Isern S, Michael SF, Lorenzana I, Yozwiak NL, MacInnis BL, Bosch I, Gehrke L, Zhang F, Sabeti PC (2018) Field-deployable viral diagnostics using CRISPR-Cas13. Science 360(6387):444–448. https://doi.org/10.1126/science.aas8836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barrangou R, Marraffini LA (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54(2):234–244. https://doi.org/10.1016/j.molcel.2014.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J (2016) Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353(6298):aaf7907. https://doi.org/10.1126/science.aaf7907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kalhor R, Mali P, Church GM (2017) Rapidly evolving homing CRISPR barcodes. Nat Methods 14(2):195–200. https://doi.org/10.1038/nmeth.4108

    Article  CAS  PubMed  Google Scholar 

  83. Michlits G, Hubmann M, Wu SH, Vainorius G, Budusan E, Zhuk S, Burkard TR, Novatchkova M, Aichinger M, Lu Y, Reece-Hoyes J, Nitsch R, Schramek D, Hoepfner D, Elling U (2017) CRISPR-UMI: single-cell lineage tracing of pooled CRISPR-Cas9 screens. Nat Methods 14(12):1191–1197. https://doi.org/10.1038/nmeth.4466

    Article  CAS  PubMed  Google Scholar 

  84. Alemany A, Florescu M, Baron CS, Peterson-Maduro J, van Oudenaarden A (2018) Whole-organism clone tracing using single-cell sequencing. Nature 556(7699):108–112. https://doi.org/10.1038/nature25969

    Article  CAS  PubMed  Google Scholar 

  85. Kalhor R, Kalhor K, Mejia L, Leeper K, Graveline A, Mali P, Church GM (2018) Developmental barcoding of whole mouse via homing CRISPR. Science 361(6405):eaat9804. https://doi.org/10.1126/science.aat9804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Guernet A, Mungamuri SK, Cartier D, Sachidanandam R, Jayaprakash A, Adriouch S, Vezain M, Charbonnier F, Rohkin G, Coutant S, Yao S, Ainani H, Alexandre D, Tournier I, Boyer O, Aaronson SA, Anouar Y, Grumolato L (2016) CRISPR-barcoding for intratumor genetic heterogeneity modeling and functional analysis of oncogenic driver mutations. Mol Cell 63(3):526–538. https://doi.org/10.1016/j.molcel.2016.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kampmann M (2017) Elucidating drug targets and mechanisms of action by genetic screens in mammalian cells. Chem Commun (Camb) 53(53):7162–7167. https://doi.org/10.1039/c7cc02349a

    Article  CAS  Google Scholar 

  88. Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR (2015) Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 33(6):661–667. https://doi.org/10.1038/nbt.3235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hess GT, Fresard L, Han K, Lee CH, Li A, Cimprich KA, Montgomery SB, Bassik MC (2016) Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods 13(12):1036–1042. https://doi.org/10.1038/nmeth.4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X (2016) Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods 13(12):1029–1035. https://doi.org/10.1038/nmeth.4027

    Article  CAS  PubMed  Google Scholar 

  91. Jost M, Chen Y, Gilbert LA, Horlbeck MA, Krenning L, Menchon G, Rai A, Cho MY, Stern JJ, Prota AE, Kampmann M, Akhmanova A, Steinmetz MO, Tanenbaum ME, Weissman JS (2017) Combined CRISPRi/a-based chemical genetic screens reveal that Rigosertib is a microtubule-destabilizing agent. Mol Cell 68(1):210–223 e216. https://doi.org/10.1016/j.molcel.2017.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zimmermann M, Murina O, Reijns MAM, Agathanggelou A, Challis R, Tarnauskaite Z, Muir M, Fluteau A, Aregger M, McEwan A, Yuan W, Clarke M, Lambros MB, Paneesha S, Moss P, Chandrashekhar M, Angers S, Moffat J, Brunton VG, Hart T, de Bono J, Stankovic T, Jackson AP, Durocher D (2018) CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature 559(7713):285–289. https://doi.org/10.1038/s41586-018-0291-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Castro NP, Fedorova-Abrams ND, Merchant AS, Rangel MC, Nagaoka T, Karasawa H, Klauzinska M, Hewitt SM, Biswas K, Sharan SK, Salomon DS (2015) Cripto-1 as a novel therapeutic target for triple negative breast cancer. Oncotarget 6(14):11910–11929. https://doi.org/10.18632/oncotarget.4182

    Article  PubMed  Google Scholar 

  94. Pan D, Kobayashi A, Jiang P, Ferrari de Andrade L, Tay RE, Luoma AM, Tsoucas D, Qiu X, Lim K, Rao P, Long HW, Yuan GC, Doench J, Brown M, Liu XS, Wucherpfennig KW (2018) A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359(6377):770–775. https://doi.org/10.1126/science.aao1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, Collins NB, Bi K, LaFleur MW, Juneja VR, Weiss SA, Lo J, Fisher DE, Miao D, Van Allen E, Root DE, Sharpe AH, Doench JG, Haining WN (2017) In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547(7664):413–418. https://doi.org/10.1038/nature23270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ribeiro JR, Schorl C, Yano N, Romano N, Kim KK, Singh RK, Moore RG (2016) HE4 promotes collateral resistance to cisplatin and paclitaxel in ovarian cancer cells. J Ovarian Res 9(1):28. https://doi.org/10.1186/s13048-016-0240-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. van Diemen FR, Lebbink RJ (2017) CRISPR/Cas9, a powerful tool to target human herpesviruses. Cell Microbiol 19(2). https://doi.org/10.1111/cmi.12694

    Article  Google Scholar 

  98. Wang J, Quake SR (2014) RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc Natl Acad Sci U S A 111(36):13157–13162. https://doi.org/10.1073/pnas.1410785111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kennedy EM, Kornepati AV, Goldstein M, Bogerd HP, Poling BC, Whisnant AW, Kastan MB, Cullen BR (2014) Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 88(20):11965–11972. https://doi.org/10.1128/JVI.01879-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kennedy EM, Bassit LC, Mueller H, Kornepati AVR, Bogerd HP, Nie T, Chatterjee P, Javanbakht H, Schinazi RF, Cullen BR (2015) Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 476:196–205. https://doi.org/10.1016/j.virol.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  101. Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF, Gao X (2015) Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther 22(5):404–412. https://doi.org/10.1038/gt.2015.2

    Article  CAS  PubMed  Google Scholar 

  102. Sakuma T, Masaki K, Abe-Chayama H, Mochida K, Yamamoto T, Chayama K (2016) Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes Cells 21(11):1253–1262. https://doi.org/10.1111/gtc.12437

    Article  CAS  PubMed  Google Scholar 

  103. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, Odak A, Gonen M, Sadelain M (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543(7643):113–117. https://doi.org/10.1038/nature21405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 23(9):2255–2266. https://doi.org/10.1158/1078-0432.CCR-16-1300

    Article  CAS  PubMed  Google Scholar 

  105. Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017) A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 8(10):17002–17011. https://doi.org/10.18632/oncotarget.15218

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, Marson A (2017) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep 7(1):737. https://doi.org/10.1038/s41598-017-00462-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo X, Jiang H, Shi B, Zhou M, Zhang H, Shi Z, Du G, Luo H, Wu X, Wang Y, Sun R, Li Z (2018) Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma. Front Pharmacol 9:1118. https://doi.org/10.3389/fphar.2018.01118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang Y, Zhang X, Cheng C, Mu W, Liu X, Li N, Wei X, Liu X, Xia C, Wang H (2017) CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells. Front Med 11(4):554–562. https://doi.org/10.1007/s11684-017-0543-6

    Article  PubMed  Google Scholar 

  109. Jung IY, Kim YY, Yu HS, Lee M, Kim S, Lee J (2018) CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells. Cancer Res 78(16):4692–4703. https://doi.org/10.1158/0008-5472.CAN-18-0030

    Article  CAS  PubMed  Google Scholar 

  110. Kipniss NH, Dingal P, Abbott TR, Gao Y, Wang H, Dominguez AA, Labanieh L, Qi LS (2017) Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system. Nat Commun 8(1):2212. https://doi.org/10.1038/s41467-017-02075-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH, Forsman CL, Hansen MJ, Jin F, Ayasoufi K, Hefazi M, Schick KJ, Walters DK, Ahmed O, Chappell D, Sahmoud T, Durrant C, Nevala WK, Patnaik MM, Pease L, Hedin KE, Kay NE, Johnson AJ, Kenderian SS (2018) GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 133:697. https://doi.org/10.1182/blood-2018-10-881722

    Article  CAS  PubMed  Google Scholar 

  112. Kim MY, Yu KR, Kenderian SS, Ruella M, Chen S, Shin TH, Aljanahi AA, Schreeder D, Klichinsky M, Shestova O, Kozlowski MS, Cummins KD, Shan X, Shestov M, Bagg A, Morrissette JJD, Sekhri P, Lazzarotto CR, Calvo KR, Kuhns DB, Donahue RE, Behbehani GK, Tsai SQ, Dunbar CE, Gill S (2018) Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 173(6):1439–1453 e1419. https://doi.org/10.1016/j.cell.2018.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Minagawa A, Yoshikawa T, Yasukawa M, Hotta A, Kunitomo M, Iriguchi S, Takiguchi M, Kassai Y, Imai E, Yasui Y, Kawai Y, Zhang R, Uemura Y, Miyoshi H, Nakanishi M, Watanabe A, Hayashi A, Kawana K, Fujii T, Nakatsura T, Kaneko S (2018) Enhancing T cell receptor stability in rejuvenated iPSC-derived T cells improves their use in Cancer immunotherapy. Cell Stem Cell 23:850. https://doi.org/10.1016/j.stem.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  114. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556(7699):57–63. https://doi.org/10.1038/nature26155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, Bode NM, McNeill MS, Yan S, Camarena J, Lee CM, Park SH, Wiebking V, Bak RO, Gomez-Ospina N, Pavel-Dinu M, Sun W, Bao G, Porteus MH, Behlke MA (2018) A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med 24(8):1216–1224. https://doi.org/10.1038/s41591-018-0137-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jiang J, Zhang L, Zhou X, Chen X, Huang G, Li F, Wang R, Wu N, Yan Y, Tong C, Srivastava S, Wang Y, Liu H, Ying QL (2016) Induction of site-specific chromosomal translocations in embryonic stem cells by CRISPR/Cas9. Sci Rep 6:21918. https://doi.org/10.1038/srep21918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Bing C. Wang, Francesco Marincola, and other colleagues of Refuge Biotechnologies for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Balan, V., Wang, J. (2020). The CRISPR System and Cancer Immunotherapy Biomarkers. In: Thurin, M., Cesano, A., Marincola, F. (eds) Biomarkers for Immunotherapy of Cancer. Methods in Molecular Biology, vol 2055. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9773-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9773-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9772-5

  • Online ISBN: 978-1-4939-9773-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics