Skip to main content

Development of Gene Expression-Based Biomarkers on the nCounter® Platform for Immuno-Oncology Applications

  • Protocol
  • First Online:
Biomarkers for Immunotherapy of Cancer

Abstract

Biomarkers based on transcriptional profiling can be useful in the measurement of complex and/or dynamic physiological states where other profiling strategies such as genomic or proteomic characterization are not able to adequately measure the biology. One particular advantage of transcriptional biomarkers is the ease with which they can be measured in the clinical setting using robust platforms such as the NanoString nCounter system. The nCounter platform enables digital quantitation of multiplexed RNA from small amounts of blood, formalin-fixed, paraffin-embedded tumors, or other such biological samples that are readily available from patients, and the chapter uses it as the primary example for diagnostic assay development. However, development of diagnostic assays based on RNA biomarkers on any platform requires careful consideration of all aspects of the final clinical assay a priori, as well as design and execution of the development program in a way that will maximize likelihood of future success. This chapter introduces transcriptional biomarkers and provides an overview of the design and development process that will lead to a locked diagnostic assay that is ready for validation of clinical utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Food and Drug Administration (2018) Draft developing and labeling in vitro companion diagnostic devices for a specific group or class of oncology therapeutic products guidance for industry. https://www.fda.gov/ucm/groups/fdagov-public/@fdagov-afda-gen/documents/document/ucm627805.pdf. Accessed 30 Jan 2019

  2. Sheerens H et al (2017) Current status of companion and complementary diagnostic. Clin Transl Sci 10(2):84–92

    Article  Google Scholar 

  3. Committee on Policy Issues in the Clinical Development and Use of Biomarkers for Molecularly Targeted Therapies; Board on Health Care Services; Institute of Medicine; National Academies of Sciences, Engineering, and Medicine (2016) In: Graig LA, Phillips JK, Moses HL (eds) Biomarker tests for molecularly targeted therapies: key to unlocking precision medicine. National Academies Press (US), Washington, DC. https://doi.org/10.17226/21860. Available from: https://www.ncbi.nlm.nih.gov/books/NBK349100/

    Chapter  Google Scholar 

  4. Cesano A, Warren S (2018) Bringing the next generation of Immuno-oncology biomarkers to the clinic. Biomedicine 6(1). https://doi.org/10.3390/biomedicines6010014

  5. Butterfield L (2017) The society for immunotherapy of cancer biomarkers task force recommendations review. Semin Cancer Biol 52(2):12–15

    PubMed  PubMed Central  Google Scholar 

  6. Gnjatic S et al (2017) Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. J Immunother Cancer 5:44

    Article  PubMed  PubMed Central  Google Scholar 

  7. US Food and Drug Administration (2007) Guidance for industry and FDA staff—Class II special controls guidance document: gene expression profiling test system for breast cancer prognosis. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm079163.htm

  8. Nielsen T et al (2014) Analytical validation of the PAM50-based prosigna breast cancer prognostic gene signature assay and nCounter analysis system using formalin-fixed paraffin-embedded breast tumor specimens. BMC Cancer 14:177

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wallden B et al (2015) Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med Genet 8:54

    Google Scholar 

  10. Geiss GG et al (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26(3):317–325

    Article  CAS  PubMed  Google Scholar 

  11. Jiang L et al (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res 21(9):1543–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clinical and Laboratory Standards Institute (2018) Validation and verification of multiplex nucleic acid assays, 2nd edn. Wayne, PA, USA

    Google Scholar 

  13. US Food and Drug Administration (2014) Guidance for industry and FDA staff: qualification process for drug development tools. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM230597.pdf

  14. Marton MJ, Weiner R (2013) Practical guidance for implementing predictive biomarkers into early phase clinical studies. Biomed Res Int 2013:891391

    Article  PubMed  PubMed Central  Google Scholar 

  15. Masucci GV et al (2016) Validation of biomarkers to predict response to immunotherapy in cancer: volume I — pre-analytical and analytical validation. J Immunother Cancer 4:7

    Article  Google Scholar 

  16. Dobbin KK et al (2016) Validation of biomarkers to predict response to immunotherapy in cancer: volume II - clinical validation and regulatory considerations. J Immunother Cancer 4:77

    Article  PubMed  PubMed Central  Google Scholar 

  17. Plebani M et al (2014) Harmonization of pre-analytical quality indicators. Biochem Med 24(1):105

    Article  Google Scholar 

  18. Office of Biorepositories and Biospecimen Research (2011) National Cancer Institute, National Institutes of Health, US Department of Health and Human Services. National Cancer Institute Best Practices for Biospecimen Resources. https://biospecimens.cancer.gov/bestpractices/2016-NCIBestPractices.pdf. Accessed 30 Jan 2019

  19. Chau CH et al (2008) Validation of analytic methods for biomarkers used in drug development. Clin Cancer Res 14(19):5967

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee JW et al (2005) Method validation and measurement of biomarkers in nonclinical and clinical samples in drug development: a conference report. Pharm Res 22(4):499

    Article  CAS  PubMed  Google Scholar 

  21. Danaher P et al (2017) Gene expression markers of tumor infiltrating leukocytes. J Immunother Cancer 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang A, Sarwal MM (2015) Computational models for transplant biomarker discovery. Front Immunol 6. https://doi.org/10.3389/fimmu.2015.00458

  23. Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. New York, NY Springer; 2001

    Google Scholar 

  24. Bair E (2004) Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol 2(4):E108

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dabney AR (2006) Classification of microarrays to nearest centroids. Bioinformatics 21(22):4148–4154

    Article  Google Scholar 

  26. Dudoit S et al (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97:77–87

    Article  CAS  Google Scholar 

  27. Tibshirani R (1994) Regression selection and shrinkage via the lasso. J R Stat Soc Series B 58:267–288

    Google Scholar 

  28. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol 67:301–320

    Article  Google Scholar 

  29. Tibshiani R et al (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 99(10):6567–6572

    Article  Google Scholar 

  30. Ayers M et al (2017) IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940

    Article  PubMed  PubMed Central  Google Scholar 

  31. Scott DW (2014) Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood 123(8):1214–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prat A et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68

    Article  PubMed  PubMed Central  Google Scholar 

  33. Burstein et al (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21(7):1688–1698

    Article  CAS  PubMed  Google Scholar 

  34. Guinney J et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21:1350–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sjödahl G et al (2017) Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification. J Pathol 242(1):113–125

    Article  PubMed  PubMed Central  Google Scholar 

  36. Committee on the Review of Omics-Based Tests for Predicting Patient Outcomes in Clinical Trials; Board on Health Care Services; Board on Health Sciences Policy; Institute of Medicine; Micheel CM, Nass SJ, Omenn GS, eds (2012) Washington, DC: National Academies Press (US). Available from: https://www.ncbi.nlm.nih.gov/books/NBK202168/

  37. Richard AC et al (2014) Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation. BMC Genomics 15:649

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vandesompele J et al (2002 Jun) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034–research0031

    Article  PubMed  PubMed Central  Google Scholar 

  39. Warren S et al (2017) Pretreatment gene expression signature correlation with clinical response to pembrolizumab or nivolumab in metastatic melanoma. Poster presented at Society for Immunotherapy of Cancer Annual Meeting, Washington, DC, 3 Nov. 2017

    Google Scholar 

  40. Damotte D et al (2018) The Tumor Inflammation Signature is predictive of anti-PD1 treatment benefit in the CERTIM pan-cancer cohort. Poster presented at the American Association for Cancer Research Annual Meeting, Chicago, 14 Apr 2018

    Google Scholar 

  41. Rozeman EA et al (2017) Biomarker Analysis for the OpACIN Trial (Neo-/adjuvant ipilimumab + nivoluman (IPI+NIVO) in palpable stage 3 melanoma. Poster presented at the Society for Immunotherapy of Cancer Annual Meeting, Washington, DC, 3 Nov. 2017

    Google Scholar 

  42. Danaher P et al (2018) Pan-cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): results from the Cancer genome atlas (TCGA). J Immunother Cancer 6(1):63

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ott PA et al (2018, 2018) T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. https://doi.org/10.1200/JCO.2018.78.2276

    Article  PubMed  Google Scholar 

  44. Cristescu R et al (2018) Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362(6411):eaar3593

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Warren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Warren, S. et al. (2020). Development of Gene Expression-Based Biomarkers on the nCounter® Platform for Immuno-Oncology Applications. In: Thurin, M., Cesano, A., Marincola, F. (eds) Biomarkers for Immunotherapy of Cancer. Methods in Molecular Biology, vol 2055. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9773-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9773-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9772-5

  • Online ISBN: 978-1-4939-9773-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics