Skip to main content

Status of Immune Oncology: Challenges and Opportunities

  • Protocol
  • First Online:
Biomarkers for Immunotherapy of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2055))

Abstract

This volume is intended to review the methods used to identify biomarkers predictive of cancer responsiveness to immunotherapy. The successful development of clinically actionable biomarkers depends upon three features: (a) their biological role with respect to malignant transformation and tumor progression; (b) the ability to detect them with robust, reliable, and clinically applicable assays; and (c) their prognostic or predictive value, as validated in clinical trials.

Identifying biomarkers that have predictive value for patient selection based on the likelihood of benefiting from anticancer immunotherapy is a lengthy and complex process. To date, few predictive biomarkers for anticancer immunotherapy have been robustly analytically and clinically validated (i.e., PD-L1 expression as measured by IHC assays and microsatellite instability (MSI)/dMMR as measured by PCR or IHC, respectively).

This introductory chapter to this book focuses on scientific and technical aspects relevant to the identification and validation of predictive biomarkers for immunotherapy. We emphasize that methods should address both the biology of the tumor and the tumor microenvironment. Moreover, the identification of biomarkers requires highly sensitive, multiplexed, comprehensive techniques, especially for application in clinical care. Thus, in this chapter, we will define the outstanding questions related to the immune biology of cancer as a base for development of the biomarkers and assays using diverse methodologies. These biomarkers will likely be identified through research that integrates conventional immunological approaches along with high-throughput genomic and proteomic screening and the host immune response of individual patients that relates to individual tumor biology and immune drugs’ mechanism of action.

Checkpoint inhibitor therapy (CIT) is by now an accepted modality of cancer treatment. However, immune resistance is common, and most patients do not benefit from the treatment. The reasons for resistance are diverse, and approaches to circumvent it need to consider genetic, biologic, and environmental factors that affect anticancer immune response. Here, we propose to systematically address fundamental concepts based on the premise that malignant cells orchestrate their surroundings by interacting with innate and adaptive immune sensors. This principle applies to most cancers and governs their evolution in the immune-competent host. Understanding the basic requirement(s) for this evolutionary process will guide biomarker discovery and validation and ultimately guide to effective therapeutic choices. This volume will also discuss novel biomarker approaches aimed at informing an effective assay development from a mechanistic point of view, as well as the clinical implementation (i.e., patient enrichment) for immune therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDR3:

Complementarity determining region 3

CIT:

Checkpoint inhibitor therapy

FDA:

Food and Drug Administration

FFPE:

Formalin-fixed paraffin-embedded

HLA:

Human leukocyte antigen

ICD:

Immunogenic cell death

ICR:

Immunologic constant of rejection

IFN:

Interferon

IHC:

Immunohistochemistry

IL:

Interleukin

IO:

Immune oncology

MOA:

Mechanism of action

MSI-H/dMMR:

Microsatellite instability high/deficient mismatch repair

PD-L1:

Programmed death-ligand 1

STAT:

Signal transducer and activator of transcription

TCR:

T cell receptor

TILs:

Tumor-infiltrating lymphocytes

TIS:

Tumor inflammation signature

TMB:

Tumor mutation burden

TME:

Tumor microenvironment

References

  1. Salk J (1969) Immunological paradoxes: theoretical considerations in the rejection or retention of grafts, tumors, and normal tissue. Ann N Y Acad Sci 164(2):365–380

    Article  CAS  PubMed  Google Scholar 

  2. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R (2018) Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 6(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Emens LA, Ascierto PA, Darcy PK, Demaria S, Eggermont AMM, Redmond WL et al (2017) Cancer immunotherapy: opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer 81:116–129

    Article  CAS  PubMed  Google Scholar 

  4. Ascierto PA, Puzanov I, Agarwala SS, Bifulco C, Botti G, Caraco C et al (2018) Perspectives in melanoma: meeting report from the Melanoma Bridge (30 November–2 December, 2017, Naples, Italy). J Transl Med 16(1):207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ascierto PA, Brugarolas J, Buonaguro L, Butterfield LH, Carbone D, Daniele B et al (2018) Perspectives in immunotherapy: meeting report from the Immunotherapy Bridge (29–30 November, 2017, Naples, Italy). J Immunother Cancer 6(1):69

    Article  PubMed  PubMed Central  Google Scholar 

  6. Memarnejadian A, Meilleur CE, Shaler CR, Khazaie K, Bennink JR, Schell TD et al (2017) PD-1 blockade promotes epitope spreading in anticancer CD8(+) T cell responses by preventing fratricidal death of subdominant clones to relieve immunodomination. J Immunol 199(9):3348–3359

    Article  CAS  PubMed  Google Scholar 

  7. Wang E, Zhao Y, Monaco A, Uccellini L, Kirkwood JM, Spyropoulou-Vlachou M et al (2012) A multi-factorial genetic model for prognostic assessment of high risk melanoma patients receiving adjuvant interferon. PLoS One 7(7):e40805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu R, Turan T, Samayoa J, Marincola FM (2017) Cancer immune resistance: can theories converge? Emerg Top Life Sci 1(5):411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Turan T, Kannan D, Patel M, Barnes MJ, Tanlimco SG, Lu R et al (2018) Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer 6(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang E, Worschech A, Marincola FM (2008) The immunologic constant of rejection. Trends Immunol 29(6):256–262

    Article  PubMed  CAS  Google Scholar 

  11. Orecchioni M, Bedognetti D, Newman L, Fuoco C, Spada F, Hendrickx W et al (2017) Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nat Commun 8(1):1109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Galon J, Angell HK, Bedognetti D, Marincola FM (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39(1):11–26

    Article  CAS  PubMed  Google Scholar 

  13. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG et al (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abd Al Samid M, Chaudhary B, Khaled YS, Ammori BJ, Elkord E (2016) Combining FoxP3 and Helios with GARP/LAP markers can identify expanded Treg subsets in cancer patients. Oncotarget 7(12):14083–14094

    Article  PubMed  Google Scholar 

  15. Alinejad V, Dolati S, Motallebnezhad M, Yousefi M (2017) The role of IL17B-IL17RB signaling pathway in breast cancer. Biomed Pharmacother 88:795–803

    Article  CAS  PubMed  Google Scholar 

  16. Munn DH, Bronte V (2016) Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol 39:1–6

    Article  CAS  PubMed  Google Scholar 

  17. Mondanelli G, Ugel S, Grohmann U, Bronte V (2017) The immune regulation in cancer by the amino acid metabolizing enzymes ARG and IDO. Curr Opin Pharmacol 35:30–39

    Article  CAS  PubMed  Google Scholar 

  18. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17(2):97–111

    Article  CAS  PubMed  Google Scholar 

  19. Crittenden MR, Baird J, Friedman D, Savage T, Uhde L, Alice A et al (2016) Mertk on tumor macrophages is a therapeutic target to prevent tumor recurrence following radiation therapy. Oncotarget 7(48):78653–78666

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hatfield SM, Sitkovsky M (2016) A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1alpha driven immunosuppression and improve immunotherapies of cancer. Curr Opin Pharmacol 29:90–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M et al (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214(3):579–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Salerno EP, Bedognetti D, Mauldin IS, Deacon DH, Shea SM, Pinczewski J et al (2016) Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk. Oncoimmunology 5(12):e1240857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235

    Article  CAS  PubMed  Google Scholar 

  24. Daragmeh J, Barriah W, Saad B, Zaid H (2016) Analysis of PI3K pathway components in human cancers. Oncol Lett 11(4):2913–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH et al (2016) Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 539(7629):443–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Karlsson E, Veenstra C, Emin S, Dutta C, Perez-Tenorio G, Nordenskjold B et al (2015) Loss of protein tyrosine phosphatase, non-receptor type 2 is associated with activation of AKT and tamoxifen resistance in breast cancer. Breast Cancer Res Treat 153(1):31–40

    Article  CAS  PubMed  Google Scholar 

  27. Hendrickx W, Simeone I, Anjum S, Mokrab Y, Bertucci F, Finetti P et al (2017) Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis. Oncoimmunology 6(2):e1253654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Turan T, Kannan D, Patel M, Matthew Barnes J, Tanlimco SG, Lu R et al (2018) Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer 6(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mantovani A, Romero P, Palucka AK, Marincola FM (2008) Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371(9614):771–783

    Article  CAS  PubMed  Google Scholar 

  30. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    Article  PubMed  CAS  Google Scholar 

  31. Rossi J, Paczkowski P, Shen YW, Morse K, Flynn B, Kaiser A et al (2018) Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood 132(8):804–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Labi V, Erlacher M (2015) How cell death shapes cancer. Cell Death Dis 6:e1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palmieri G, Colombino M, Cossu A, Marchetti A, Botti G, Ascierto PA (2017) Genetic instability and increased mutational load: which diagnostic tool best direct patients with cancer to immunotherapy? J Transl Med 15(1):17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ward JP, Gubin MM, Schreiber RD (2016) The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol 130:25–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fuchs EJ, Matzinger P (1996) Is cancer dangerous to the immune system? Semin Immunol 8(5):271–280

    Article  CAS  PubMed  Google Scholar 

  36. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940

    Article  PubMed  PubMed Central  Google Scholar 

  37. Weiss GR, Grosh WW, Chianese-Bullock KA, Zhao Y, Liu H, Slingluff CL Jr et al (2011) Molecular insights on the peripheral and intratumoral effects of systemic high-dose rIL-2 (aldesleukin) administration for the treatment of metastatic melanoma. Clin Cancer Res 17(23):7440–7450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bedognetti D, Spivey TL, Zhao Y, Uccellini L, Tomei S, Dudley ME et al (2013) CXCR3/CCR5 pathways in metastatic melanoma patients treated with adoptive therapy and interleukin-2. Br J Cancer 109(9):2412–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang E, Miller LD, Ohnmacht GA, Mocellin S, Perez-Diez A, Petersen D et al (2002) Prospective molecular profiling of melanoma metastases suggests classifiers of immune responsiveness. Cancer Res 62(13):3581–3586

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X et al (2018) Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer 17(1):129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Critchley-Thorne RJ, Simons DL, Yan N, Miyahira AK, Dirbas FM, Johnson DL et al (2009) Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci U S A 106(22):9010–9015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Q, Tomei S, Ascierto ML, De Giorgi V, Bedognetti D, Dai C et al (2014) Melanoma NOS1 expression promotes dysfunctional IFN signaling. J Clin Invest 124(5):2147–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Panelli MC, Wang E, Phan G, Puhlmann M, Miller L, Ohnmacht GA et al (2002) Gene-expression profiling of the response of peripheral blood mononuclear cells and melanoma metastases to systemic IL-2 administration. Genome Biol 3(7):R35

    Article  Google Scholar 

  44. Ohnmacht GA, Wang E, Mocellin S, Abati A, Filie A, Fetsch P et al (2001) Short-term kinetics of tumor antigen expression in response to vaccination. J Immunol 167(3):1809–1820

    Article  CAS  PubMed  Google Scholar 

  45. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273

    Article  CAS  PubMed  Google Scholar 

  46. Hicklin DJ, Marincola FM, Ferrone S (1999) HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today 5(4):178–186

    Article  CAS  PubMed  Google Scholar 

  47. Ohnmacht GA, Marincola FM (2000) Heterogeneity in expression of human leukocyte antigens and melanoma-associated antigens in advanced melanoma. J Cell Physiol 182(3):332–338

    Article  CAS  PubMed  Google Scholar 

  48. Della Corte CM, Byers LA (2019) Evading the STING: LKB1 loss leads to STING silencing and immune escape in KRAS-mutant lung cancers. Cancer Discov 9(1):16–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Della Corte CM, Gay CM, Byers LA (2019) Beyond chemotherapy: emerging biomarkers and therapies as small cell lung cancer enters the immune checkpoint era. Cancer 125(4):496–498

    Article  PubMed  Google Scholar 

  50. Jacoby E, Nguyen SM, Fountaine TJ, Welp K, Gryder B, Qin H et al (2016) CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun 7:12320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lam TK, Shao S, Zhao Y, Marincola F, Pesatori A, Bertazzi PA et al (2012) Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues. Cancer Epidemiol Biomark Prev 21(12):2176–2184

    Article  CAS  Google Scholar 

  52. Gutierrez-Arcelus M, Rich SS, Raychaudhuri S (2016) Autoimmune diseases—connecting risk alleles with molecular traits of the immune system. Nat Rev Genet 17(3):160–174

    Article  PubMed  PubMed Central  Google Scholar 

  53. Soldati L, Di Renzo L, Jirillo E, Ascierto PA, Marincola FM, De Lorenzo A (2018) The influence of diet on anti-cancer immune responsiveness. J Transl Med 16(1):75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roy S, Trinchieri G (2017) Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 17(5):271–285

    Article  CAS  PubMed  Google Scholar 

  55. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K et al (2017) Influence of diet on the gut microbiome and implications for human health. J Transl Med 15(1):73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Masucci GV, Cesano A, Eggermont A, Fox BA, Wang E, Marincola FM et al (2017) The need for a network to establish and validate predictive biomarkers in cancer immunotherapy. J Transl Med 15(1):223

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dobbin KK, Cesano A, Alvarez J, Hawtin R, Janetzki S, Kirsch I et al (2016) Validation of biomarkers to predict response to immunotherapy in cancer: volume II—clinical validation and regulatory considerations. J Immunother Cancer 4:77

    Article  PubMed  PubMed Central  Google Scholar 

  58. Taube JM, Galon J, Sholl LM, Rodig SJ, Cottrell TR, Giraldo NA et al (2018) Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol 31(2):214–234

    Article  CAS  PubMed  Google Scholar 

  59. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20(19):5064–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang Q, Liu F, Liu L (2017) Prognostic significance of PD-L1 in solid tumor: an updated meta-analysis. Medicine 96(18):e6369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Giraldo NA, Nguyen P, Engle EL, Kaunitz GJ, Cottrell TR, Berry S et al (2018) Multidimensional, quantitative assessment of PD-1/PD-L1 expression in patients with Merkel cell carcinoma and association with response to pembrolizumab. J Immunother Cancer 6(1):99

    Article  PubMed  PubMed Central  Google Scholar 

  64. Halse H, Colebatch AJ, Petrone P, Henderson MA, Mills JK, Snow H et al (2018) Multiplex immunohistochemistry accurately defines the immune context of metastatic melanoma. Sci Rep 8(1):11158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tsujikawa T, Kumar S, Borkar RN, Azimi V, Thibault G, Chang YH et al (2017) Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep 19(1):203–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vanderwalde A, Spetzler D, Xiao N, Gatalica Z, Marshall J (2018) Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med 7(3):746–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fabrizio DA, George TJ Jr, Dunne RF, Frampton G, Sun J, Gowen K et al (2018) Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J Gastrointest Oncol 9(4):610–617

    Article  PubMed  PubMed Central  Google Scholar 

  69. Salem ME, Puccini A, Grothey A, Raghavan D, Goldberg RM, Xiu J et al (2018) Landscape of tumor mutation load, mismatch repair deficiency, and PD-L1 expression in a large patient cohort of gastrointestinal cancers. Mol Cancer Res 16(5):805–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Johnson DB, Frampton GM, Rioth MJ, Yusko E, Xu Y, Guo X et al (2016) Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol Res 4(11):959–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D et al (2016) ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 27(8):1386–1422

    Article  PubMed  Google Scholar 

  73. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J et al (2013) Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31(11):1023–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16(11):2598–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saeterdal I, Bjorheim J, Lislerud K, Gjertsen MK, Bukholm IK, Olsen OC et al (2001) Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci U S A 98(23):13255–13260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S et al (2017) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 168(3):542

    Article  CAS  PubMed  Google Scholar 

  79. Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS et al (2017) Tumor and microenvironment evolution during immunotherapy with Nivolumab. Cell 171(4):934–49.e15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cesano A (2015) nCounter((R)) PanCancer immune profiling panel (NanoString Technologies, Inc., Seattle, WA). J Immunother Cancer 3:42

    Article  PubMed  PubMed Central  Google Scholar 

  81. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N et al (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378(24):2288–2301

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Cesano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cesano, A., Marincola, F.M., Thurin, M. (2020). Status of Immune Oncology: Challenges and Opportunities. In: Thurin, M., Cesano, A., Marincola, F. (eds) Biomarkers for Immunotherapy of Cancer. Methods in Molecular Biology, vol 2055. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9773-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9773-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9772-5

  • Online ISBN: 978-1-4939-9773-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics