Skip to main content

Nucleic Acid Aptamers as Emerging Tools for Diagnostics and Theranostics

  • Protocol
  • First Online:
Book cover Theranostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2054))

Abstract

Aptamers are ssDNA or RNA sequences (20–80 nucleotides) generated in vitro by SELEX (Systematic Evolution of Ligands using EXponential enrichment) against diverse range of targets from small molecules to bacteria, viruses, and even eukaryotic cells. Aptamers, also known as chemical bodies, bind to their respective targets with tunable affinity and specificity, making aptamers as potent probes for diagnostics and excellent ligands for drug delivery in therapeutics. In this chapter, we have described the methods for generating DNA aptamers against proteins and their use in theranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parashar A (2016) Aptamers in therapeutics. J Clin Diagn Res 10(6):BE01–BE06. https://doi.org/10.7860/JCDR/2016/18712.7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Song K-M, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors (Basel) 12(1):612–631. https://doi.org/10.3390/s120100612

    Article  Google Scholar 

  3. Cibiel A, Dupont DM, Ducongé F (2011) Methods to identify aptamers against cell surface biomarkers. Pharmaceuticals 4(9):1216–1235. https://doi.org/10.3390/ph4091216

    Article  CAS  PubMed Central  Google Scholar 

  4. Dua P, Kim S, Lee DK (2011) Nucleic acid aptamers targeting cell-surface proteins. Methods 54(2):215–225. https://doi.org/10.1016/j.ymeth.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  5. Gopinath SC (2007) Methods developed for SELEX. Anal Bioanal Chem 387(1):171–182. https://doi.org/10.1007/s00216-006-0826-2

    Article  CAS  PubMed  Google Scholar 

  6. Allali-Hassani A, Pereira MP, Navani NK, Brown ED, Li Y (2007) Isolation of DNA aptamers for CDP-ribitol synthase, and characterization of their inhibitory and structural properties. Chembiochem 8(17):2052–2057. https://doi.org/10.1002/cbic.200700257

    Article  CAS  PubMed  Google Scholar 

  7. Kumar P, Lambadi PR, Navani NK (2015) Non-enzymatic detection of urea using unmodified gold nanoparticles based aptasensor. Biosens Bioelectron 72:340–347. https://doi.org/10.1016/j.bios.2015.05.029

    Article  CAS  PubMed  Google Scholar 

  8. Navani NK, Li Y (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10(3):272–281. https://doi.org/10.1016/j.cbpa.2006.04.003

    Article  CAS  PubMed  Google Scholar 

  9. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  Google Scholar 

  10. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818. https://doi.org/10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  11. Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Development of DNA aptamers using Cell-SELEX. Nat Protoc 5:1169. https://doi.org/10.1038/nprot.2010.66

    Article  CAS  Google Scholar 

  12. Sypabekova M, Bekmurzayeva A, Wang R, Li Y, Nogues C, Kanayeva D (2017) Selection, characterization, and application of DNA aptamers for detection of Mycobacterium tuberculosis secreted protein MPT64. Tuberculosis 104:70–78

    Article  CAS  Google Scholar 

  13. Liss M, Petersen B, Wolf H, Prohaska E (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74(17):4488–4495

    Article  CAS  Google Scholar 

  14. Misono TS, Kumar PK (2005) Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal Biochem 342(2):312–317

    Article  CAS  Google Scholar 

  15. Song K-M, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors 12(1):612–631

    Article  Google Scholar 

  16. Stoltenburg R, Nikolaus N, Strehlitz B (2012) Capture-SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J Anal Methods Chem 2012:415697

    Article  Google Scholar 

  17. Jiang L, Suri AK, Fiala R, Patel DJ (1997) Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex. Chem Biol 4(1):35–50

    Article  CAS  Google Scholar 

  18. Patel DJ, Suri AK (2000) Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. Rev Mol Biotechnol 74(1):39–60

    Article  CAS  Google Scholar 

  19. Rowe AA, Miller EA, Plaxco KW (2010) Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor. Anal Chem 82(17):7090–7095

    Article  CAS  Google Scholar 

  20. Kase D, Kulp JL, Yudasaka M, Evans JS, Iijima S, Shiba K (2004) Affinity selection of peptide phage libraries against single-wall carbon nanohorns identifies a peptide aptamer with conformational variability. Langmuir 20(20):8939–8941

    Article  CAS  Google Scholar 

  21. Famulok M (1999) Oligonucleotide aptamers that recognize small molecules. Curr Opin Struct Biol 9(3):324–329

    Article  CAS  Google Scholar 

  22. Zayats M, Huang Y, Gill R, Ma CA, Willner I (2006) Label-free and reagentless aptamer-based sensors for small molecules. J Am Chem Soc 128(42):13666–13667

    Article  CAS  Google Scholar 

  23. Kumar P, Ramulu Lambadi P, Kumar Navani N (2015) Non-enzymatic detection of urea using unmodified gold nanoparticles based aptasensor. Biosens Bioelectron 72:340–347. https://doi.org/10.1016/j.bios.2015.05.029

    Article  CAS  PubMed  Google Scholar 

  24. McCauley TG, Hamaguchi N, Stanton M (2003) Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal Biochem 319(2):244–250

    Article  CAS  Google Scholar 

  25. Xiang Y, Zhang Y, Qian X, Chai Y, Wang J, Yuan R (2010) Ultrasensitive aptamer-based protein detection via a dual amplified biocatalytic strategy. Biosens Bioelectron 25(11):2539–2542

    Article  CAS  Google Scholar 

  26. Liu G, Yu X, Xue F, Chen W, Ye Y, Yang X et al (2012) Screening and preliminary application of a DNA aptamer for rapid detection of Salmonella O8. Microchim Acta 178(1–2):237–244

    Article  CAS  Google Scholar 

  27. Joshi R, Janagama H, Dwivedi HP, Kumar TS, Jaykus L-A, Schefers J et al (2009) Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol Cell Probes 23(1):20–28

    Article  CAS  Google Scholar 

  28. Queirós RB, de-Los-Santos-Álvarez N, Noronha J, Sales MGF (2013) A label-free DNA aptamer-based impedance biosensor for the detection of E. coli outer membrane proteins. Sens Actuators B Chem 181:766–772

    Article  Google Scholar 

  29. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80(4):1067–1072

    Article  CAS  Google Scholar 

  30. Wang G, Wang Y, Chen L, Choo J (2010) Nanomaterial-assisted aptamers for optical sensing. Biosens Bioelectron 25(8):1859–1868

    Article  CAS  Google Scholar 

  31. Liu X, Wang F, Aizen R, Yehezkeli O, Willner I (2013) Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. J Am Chem Soc 135(32):11832–11839

    Article  CAS  Google Scholar 

  32. Feng L, Chen Y, Ren J, Qu X (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32(11):2930–2937

    Article  CAS  Google Scholar 

  33. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21(10):1887–1892

    Article  CAS  Google Scholar 

  34. Min K, Song K-M, Cho M, Chun Y-S, Shim Y-B, Ku JK et al (2010) Simultaneous electrochemical detection of both PSMA (+) and PSMA (−) prostate cancer cells using an RNA/peptide dual-aptamer probe. Chem Commun 46(30):5566–5568

    Article  CAS  Google Scholar 

  35. Lai RY, Plaxco KW, Heeger AJ (2007) Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal Chem 79(1):229–233

    Article  CAS  Google Scholar 

  36. Taleat Z, Cristea C, Marrazza G, Mazloum-Ardakani M, Săndulescu R (2014) Electrochemical immunoassay based on aptamer–protein interaction and functionalized polymer for cancer biomarker detection. J Electroanal Chem 717:119–124

    Article  Google Scholar 

  37. Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Baradaran B, Maleki A, Hejazi M, Mokhtarzadeh A et al (2018) Recent advances on nanomaterial based electrochemical and optical aptasesnors for detection of cancer biomarkers. Trends Anal Chem. https://doi.org/10.1016/j.trac.2017.12.019

    Article  CAS  Google Scholar 

  38. Rauf S, Mishra GK, Azhar J, Mishra RK, Goud KY, Nawaz MAH et al (2018) Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Anal Biochem 545:13–19

    Article  CAS  Google Scholar 

  39. Sharma P, Tuteja SK, Bhalla V, Shekhawat G, Dravid VP, Suri CR (2013) Bio-functionalized graphene-graphene oxide nanocomposite based electrochemical immunosensing. Biosens Bioelectron 39(1):99–105. https://doi.org/10.1016/j.bios.2012.06.061. S0956-5663(12)00420-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  40. Mutreja R, Jariyal M, Pathania P, Sharma A, Sahoo DK, Suri CR (2016) Novel surface antigen based impedimetric immunosensor for detection of Salmonella typhimurium in water and juice samples. Biosens Bioelectron 85:707–713. https://doi.org/10.1016/j.bios.2016.05.079

    Article  CAS  PubMed  Google Scholar 

  41. Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S (2011) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7(15):2241–2249

    Article  CAS  Google Scholar 

  42. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070

    Article  CAS  Google Scholar 

  43. Savla R, Taratula O, Garbuzenko O, Minko T (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release 153(1):16–22

    Article  CAS  Google Scholar 

  44. Gray BP, Kelly L, Ahrens DP, Barry AP, Kratschmer C, Levy M et al (2018) Tunable cytotoxic aptamer–drug conjugates for the treatment of prostate cancer. Proc Natl Acad Sci U S A 115(18):4761–4766

    Article  CAS  Google Scholar 

  45. Deng R, Qu H, Liang L, Zhang J, Zhang B, Huang D et al (2017) Tracing the therapeutic process of targeted aptamer/drug conjugate on cancer cells by surface-enhanced raman scattering spectroscopy. Anal Chem 89(5):2844–2851

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The aptamer work in Navani group is supported by Department of Biotechnology grant, India and DST, India. The authors acknowledge Shubham Jain for his assistance in drawing schematics. R.M. is supported by SERB-NPDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar Navani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mutreja, R., Baba, S.A., Navani, N.K. (2019). Nucleic Acid Aptamers as Emerging Tools for Diagnostics and Theranostics. In: Batra, J., Srinivasan, S. (eds) Theranostics. Methods in Molecular Biology, vol 2054. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9769-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9769-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9768-8

  • Online ISBN: 978-1-4939-9769-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics