Skip to main content

Reactive Oxygen Species Detection of Drosophila Cells by Flow Cytometry

  • Protocol
  • First Online:
Fundamental Approaches to Screen Abnormalities in Drosophila

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Flow cytometry is an accurate and versatile technique to measure the fluorescence intensity of a large population of cells. In this chapter, we are using flow cytometer to detect the number of cells producing reactive oxygen species (ROS) in Drosophila under stress condition. ROS constitute a group of reactive molecules and free radicals derived from molecular oxygen. In this protocol, we are describing estimation of ROS from various types of Drosophila larval tissues, like imaginal disc, gut and freshly isolated hemolymph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54(1):1015–1069

    Article  CAS  Google Scholar 

  2. Halliwell B (1999) Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res 31(4):261–272

    Article  CAS  Google Scholar 

  3. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134(3):707–716

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Petersen RB, Nunomura A, Lee H-g, Casadesus G, Perry G, Smith MA, Zhu X (2007) Signal transduction cascades associated with oxidative stress in Alzheimer’s disease. J Alzheimers Dis 11(2):143–152

    Article  CAS  Google Scholar 

  5. Ozben T (2007) Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 96(9):2181–2196

    Article  CAS  Google Scholar 

  6. Shults CW (2005) Antioxidants as therapy for Parkinson’s disease. Antioxid Redox Signal 7(5–6):694–700

    Article  CAS  Google Scholar 

  7. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2):231–255

    Article  CAS  Google Scholar 

  8. Owusu-Ansah E, Banerjee U (2009) Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461(7263):537

    Article  CAS  Google Scholar 

  9. Cossarizza A, Ferraresi R, Troiano L, Roat E, Gibellini L, Bertoncelli L, Nasi M, Pinti M (2009) Simultaneous analysis of reactive oxygen species and reduced glutathione content in living cells by polychromatic flow cytometry. Nat Protoc 4(12):1790

    Article  CAS  Google Scholar 

  10. Owusu-Ansah E, Yavari A, Banerjee U PROTOCOL EXCHANGE| Community CONTRIBUTED A protocol for in vivo detection of reactive oxygen species

    Google Scholar 

  11. Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65(10):1575–1582

    Article  CAS  Google Scholar 

  12. Xu C, Luo J, He L, Montell C, Perrimon N (2017) Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca2+ signaling in the Drosophila midgut. Elife 6:e22441

    Article  Google Scholar 

  13. Podratz JL, Lee H, Knorr P, Koehler S, Forsythe S, Lambrecht K, Arias S, Schmidt K, Steinhoff G, Yudintsev G (2017) Cisplatin induces mitochondrial deficits in Drosophila larval segmental nerve. Neurobiol Dis 97:60–69

    Article  CAS  Google Scholar 

  14. Zhang Y, Dai M, Yuan Z (2018) Methods for the detection of reactive oxygen species. Anal Methods 10(38):4625–4638

    Article  CAS  Google Scholar 

  15. Royall JA, Ischiropoulos H (1993) Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 302(2):348–355

    Article  CAS  Google Scholar 

  16. Mills EM, Takeda K, Yu Z-X, Ferrans V, Katagiri Y, Jiang H, Lavigne MC, Leto TL, Guroff G (1998) Nerve growth factor treatment prevents the increase in superoxide produced by epidermal growth factor in PC12 cells. J Biol Chem 273(35):22165–22168

    Article  CAS  Google Scholar 

  17. Sundaresan M, Yu Z-X, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270(5234):296–299

    Article  CAS  Google Scholar 

  18. Gabriel C, Camins A, Sureda FX, Aquirre L, Escubedo E, Pallàs M, Camarasa J (1997) Determination of nitric oxide generation in mammalian neurons using dichlorofluorescin diacetate and flow cytometry. J Pharmacol Toxicol Methods 38(2):93–98

    Article  CAS  Google Scholar 

  19. Possel H, Noack H, Augustin W, Keilhoff G, Wolf G (1997) 2,7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation. FEBS Lett 416(2):175–178

    Article  CAS  Google Scholar 

  20. García-Ruiz C, Colell A, Marí M, Morales A, Fernández-Checa JC (1997) Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species role of mitochondrial glutathione. J Biol Chem 272(17):11369–11377

    Article  Google Scholar 

  21. Armstrong D (2010) Advanced protocols in oxidative stress II. Springer

    Google Scholar 

  22. Ameziane-El-Hassani R, Dupuy C (2013) Detection of intracellular reactive oxygen species (CM-H2DCFDA). Bio-protocol 3(1):e313

    Article  Google Scholar 

  23. de la Cruz AFA, Edgar BA (2008) Flow cytometric analysis of Drosophila cells. In: Drosophila. Springer, pp 373–389

    Google Scholar 

  24. Cumberledge S, Krasnow MA (1994) Preparation and analysis of pure cell populations from Drosophila. In: Methods in cell biology, vol 44. Elsevier, pp 143–159

    Google Scholar 

  25. Bryant Z, Subrahmanyan L, Tworoger M, LaTray L, Liu C-R, Li M-J, van den Engh G, Ruohola-Baker H (1999) Characterization of differentially expressed genes in purified Drosophila follicle cells: toward a general strategy for cell type-specific developmental analysis. Proc Natl Acad Sci 96(10):5559–5564

    Article  CAS  Google Scholar 

  26. Neufeld TP, de la Cruz AFA, Johnston LA, Edgar BA (1998) Coordination of growth and cell division in the Drosophila wing. Cell 93(7):1183–1193

    Article  CAS  Google Scholar 

  27. Tirouvanziam R, Davidson CJ, Lipsick JS, Herzenberg LA (2004) Fluorescence-activated cell sorting (FACS) of Drosophila hemocytes reveals important functional similarities to mammalian leukocytes. Proc Natl Acad Sci 101(9):2912–2917

    Article  CAS  Google Scholar 

  28. Krasnow MA, Cumberledge S, Manning G, Herzenberg LA, Nolan GP (1991) Whole animal cell sorting of Drosophila embryos. Science 251(4989):81–85

    Article  CAS  Google Scholar 

  29. Lanot R, Zachary D, Holder F, Meister M (2001) Postembryonic hematopoiesis in Drosophila. Dev Biol 230(2):243–257

    Article  CAS  Google Scholar 

  30. Hoffmann JA, Reichhart J-M (2002) Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3(2):121

    Article  CAS  Google Scholar 

  31. Kurucz E, Zettervall C-J, Sinka R, Vilmos P, Pivarcsi A, Ekengren S, Hegedüs Z, Ando I, Hultmark D (2003) Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila. Proc Natl Acad Sci 100(5):2622–2627

    Article  CAS  Google Scholar 

  32. Singh MP, Reddy MK, Mathur N, Saxena D, Chowdhuri DK (2009) Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: role of ROS generation. Toxicol Appl Pharmacol 235(2):226–243

    Article  CAS  Google Scholar 

  33. Biosciences B (2000) Introduction to flow cytometry: a learning guide. Manual Part 1(1)

    Google Scholar 

Download references

Acknowledgements

We are thankful to Swetapadma Sahu and Gyanaseni Dhar for standardization of the experiment. RR is thankful to DST WOS-A for financial support. SB is thankful to Odisha DBT 3325/ST(BIO)-02/2017. MM lab is supported by Grant No. BT/PR21857/NNT/28/1238/2017, EMR/2017/003054 and Odisha DBT 3325/ST(BIO)-02/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rout, R., Basu, S., Mishra, M. (2020). Reactive Oxygen Species Detection of Drosophila Cells by Flow Cytometry. In: Mishra, M. (eds) Fundamental Approaches to Screen Abnormalities in Drosophila. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9756-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9756-5_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9755-8

  • Online ISBN: 978-1-4939-9756-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics