Skip to main content

Isolation of Gut, Imaginal Disc, Fat Body, Ovary and Testes in Various Developmental Stages of Drosophila

  • Protocol
  • First Online:
Fundamental Approaches to Screen Abnormalities in Drosophila

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 694 Accesses

Abstract

Drosophila melanogaster shares a remarkable resemblance in terms of its organ anatomy and function with that of mammals. Various organs of the fly are used as a model to study its pathologies and metabolic and therapeutic purposes. Gut, the largest organ of the fly body, shares similarity with mammalian intestine in terms of metabolic pathways, physiology and signalling. The fat body of the fly resembles the liver of mammals and helps in fat storage and nutrient sensing. Imaginal disc composed of 20–40 cells are used to check defect in early time point of development. The testes and ovary are used to study the reproductive defect. This chapter describes the dissection of the gut, fat body, ovary, testes, and imaginal discs from larvae and adult tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fristrom JW (1970) The developmental biology of Drosophila. Annu Rev Genet 4(1):325–346

    Article  CAS  PubMed  Google Scholar 

  2. Gartner LP (1976) Fine structure of adult Drosophila midgut musculature. J Submicrosc Cytol

    Google Scholar 

  3. Gartner LP (1985) The fine structural morphology of the midgut of adult Drosophila: a morphometric analysis. Tissue Cell 17(6):883–888

    Article  CAS  PubMed  Google Scholar 

  4. Shanbhag S, Tripathi S (2009) Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J Exp Biol 212(11):1731–1744

    Article  CAS  PubMed  Google Scholar 

  5. Takashima S, Younossi-Hartenstein A, Ortiz PA, Hartenstein V (2011) A novel tissue in an established model system: the Drosophila pupal midgut. Dev Genes Evol 221(2):69–81

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mathur D, Bost A, Driver I, Ohlstein B (2010) A transient niche regulates the specification of Drosophila intestinal stem cells. Science 327(5962):210–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nakagoshi H (2005) Functional specification in the Drosophila endoderm. Develop Growth Differ 47(6):383–392

    Article  CAS  Google Scholar 

  8. Buchon N, Osman D, David FP, Fang HY, Boquete J-P, Deplancke B, Lemaitre B (2013) Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep 3(5):1725–1738

    Article  CAS  PubMed  Google Scholar 

  9. Carlson JR, Hogness DS (1985) The Jonah genes: a new multigene family in Drosophila melanogaster. Dev Biol 108(2):341–354

    Article  CAS  PubMed  Google Scholar 

  10. Ross J, Jiang H, Kanost MR, Wang Y (2003) Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene 304:117–131

    Article  CAS  PubMed  Google Scholar 

  11. Horne I, Haritos VS (2008) Multiple tandem gene duplications in a neutral lipase gene cluster in Drosophila. Gene 411(1–2):27–37

    Article  CAS  PubMed  Google Scholar 

  12. Horne I, Haritos VS, Oakeshott JG (2009) Comparative and functional genomics of lipases in holometabolous insects. Insect Biochem Mol Biol 39(8):547–567

    Article  CAS  PubMed  Google Scholar 

  13. Tamaki FK, Padilha MH, Pimentel AC, Ribeiro AF, Terra WR (2012) Properties and secretory mechanism of Musca domestica digestive chymotrypsin and its relation with Drosophila melanogaster homologs. Insect Biochem Mol Biol 42(7):482–490

    Article  CAS  PubMed  Google Scholar 

  14. Kylsten P, Kimbrell DA, Daffre S, Samakovlis C, Hultmark D (1992) The lysozyme locus in Drosophila melanogaster: different genes are expressed in midgut and salivary glands. Mol Gen Genet MGG 232(3):335–343

    Article  CAS  PubMed  Google Scholar 

  15. Broderick NA, Lemaitre B (2012) Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3(4):307–321

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ryu J-H, Kim S-H, Lee H-Y, Bai JY, Nam Y-D, Bae J-W, Lee DG, Shin SC, Ha E-M, Lee W-J (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319(5864):777–782

    Article  CAS  PubMed  Google Scholar 

  17. Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, Spellman P, Boccard F, Lemaitre B (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci 102(32):11414–11419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Apidianakis Y, Rahme LG (2009) Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat Protoc 4(9):1285

    Article  CAS  PubMed  Google Scholar 

  19. Huang J-H, Douglas AE (2015) Consumption of dietary sugar by gut bacteria determines Drosophila lipid content. Biol Lett 11(9):20150469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hegedus D, Erlandson M, Gillott C, Toprak U (2009) New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 54:285–302

    Article  CAS  PubMed  Google Scholar 

  21. Edgecomb RS, Harth CE, Schneiderman AM (1994) Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. J Exp Biol 197(1):215–235

    CAS  PubMed  Google Scholar 

  22. Thompson D, Malagelada J (1981) Guts and their motions (gastrointestinal motility in health and disease). J Clin Gastroenterol 3:81–87

    Article  PubMed  Google Scholar 

  23. Pitsouli C, Apidianakis Y, Perrimon N (2009) Homeostasis in infected epithelia: stem cells take the lead. Cell Host Microbe 6(4):301–307

    Article  CAS  PubMed  Google Scholar 

  24. Rubin DC (2007) Intestinal morphogenesis. Curr Opin Gastroenterol 23(2):111–114

    Article  PubMed  Google Scholar 

  25. Kedinger M, Simon-Assmann P, Haffen K (1987) Growth and differentiation of intestinal endodermal cells in a coculture system. Gut 28(Suppl):237–241

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tepass U, Hartenstein V (1994) Epithelium formation in the Drosophila midgut depends on the interaction of endoderm and mesoderm. Development 120(3):579–590

    CAS  PubMed  Google Scholar 

  27. Barker N, van de Wetering M, Clevers H (2008) The intestinal stem cell. Genes Dev 22(14):1856–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barker N, Van Es JH, Kuipers J, Kujala P, Van Den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003

    Article  CAS  PubMed  Google Scholar 

  29. Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439(7075):475

    Article  CAS  PubMed  Google Scholar 

  30. Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439(7075):470

    Article  CAS  PubMed  Google Scholar 

  31. Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40(7):915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7(5):349

    Article  CAS  PubMed  Google Scholar 

  33. Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5(2):200–211

    Article  CAS  PubMed  Google Scholar 

  34. Takashima S, Mkrtchyan M, Younossi-Hartenstein A, Merriam JR, Hartenstein V (2008) The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454(7204):651

    Article  CAS  PubMed  Google Scholar 

  35. Lin G, Xu N, Xi R (2008) Paracrine wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 455(7216):1119

    Article  CAS  PubMed  Google Scholar 

  36. Ohlstein B, Spradling A (2007) Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315(5814):988–992

    Article  CAS  PubMed  Google Scholar 

  37. Choi NH, Kim JG, Yang DJ, Kim YS, Yoo MA (2008) Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell 7(3):318–334

    Article  CAS  PubMed  Google Scholar 

  38. Uhlirova M, Jasper H, Bohmann D (2005) Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc Natl Acad Sci 102(37):13123–13128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137(7):1343–1355

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lin G, Xu N, Xi R (2009) Paracrine unpaired signaling through the JAK/STAT pathway controls self-renewal and lineage differentiation of drosophila intestinal stem cells. J Mol Cell Biol 2(1):37–49

    Article  PubMed  CAS  Google Scholar 

  41. Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23(19):2333–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Berkey CD, Blow N, Watnick PI (2009) Genetic analysis of Drosophila melanogaster susceptibility to intestinal Vibrio cholerae infection. Cell Microbiol 11(3):461–474

    Article  CAS  PubMed  Google Scholar 

  43. Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang Y, Xi Y (2015) Fat body development and its function in energy storage and nutrient sensing in Drosophila melanogaster. J Tissue Sci Eng 6(1):1

    Google Scholar 

  45. Bharucha KN (2009) The epicurean fly: using Drosophila melanogaster to study metabolism. Pediatr Res 65(2):132

    Article  CAS  PubMed  Google Scholar 

  46. Hoshizaki DK (1994) Krüppel expression during postembryonic development of Drosophila. Dev Biol 163(1):133–140

    Article  CAS  PubMed  Google Scholar 

  47. Technau GM (1987) A single cell approach to problems of cell lineage and commitment during embryogenesis of Drosophila melanogaster. Development 100(1):1–12

    CAS  PubMed  Google Scholar 

  48. Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, Léopold P (2003) A nutrient sensor mechanism controls Drosophila growth. Cell 114(6):739–749

    Article  CAS  PubMed  Google Scholar 

  49. Sousa-Nunes R, Yee LL, Gould AP (2011) Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471(7339):508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Géminard C, Rulifson EJ, Léopold P (2009) Remote control of insulin secretion by fat cells in Drosophila. Cell Metab 10(3):199–207

    Article  PubMed  CAS  Google Scholar 

  51. Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baker KD, Thummel CS (2007) Diabetic larvae and obese flies—emerging studies of metabolism in Drosophila. Cell Metab 6(4):257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kawamura K, Shibata T, Saget O, Peel D, Bryant PJ (1999) A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. Development 126(2):211–219

    CAS  PubMed  Google Scholar 

  54. Butterworth F, Emerson L, Rasch E (1988) Maturation and degeneration of the fat body in the Drosophila larva and pupa as revealed by morphometric analysis. Tissue Cell 20(2):255–268

    Article  CAS  PubMed  Google Scholar 

  55. Aguila JR, Suszko J, Gibbs AG, Hoshizaki DK (2007) The role of larval fat cells in adult Drosophila melanogaster. J Exp Biol 210(6):956–963

    Article  PubMed  Google Scholar 

  56. Athenstaedt K, Daum G (2006) The life cycle of neutral lipids: synthesis, storage and degradation. Cell Mol Life Sci CMLS 63(12):1355–1369

    Article  CAS  PubMed  Google Scholar 

  57. Kühnlein RP (2011) The contribution of the Drosophila model to lipid droplet research. Prog Lipid Res 50(4):348–356

    Article  PubMed  CAS  Google Scholar 

  58. Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48(12):2547–2559

    Article  CAS  PubMed  Google Scholar 

  59. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306(5700):1383–1386

    Article  CAS  PubMed  Google Scholar 

  60. Zechner R, Strauss JG, Haemmerle G, Lass A, Zimmermann R (2005) Lipolysis: pathway under construction. Curr Opin Lipidol 16(3):333–340

    Article  CAS  PubMed  Google Scholar 

  61. Palm W, Sampaio JL, Brankatschk M, Carvalho M, Mahmoud A, Shevchenko A, Eaton S (2012) Lipoproteins in Drosophila melanogaster—assembly, function, and influence on tissue lipid composition. PLoS Genet 8(7):e1002828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Beira JV, Paro R (2016) The legacy of Drosophila imaginal discs. Chromosoma 125(4):573–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cohen S (1993) The development of Drosophila melanogaster, vol 2, ed Bate M, Arias AM. Cold Spring Harbor Press, New York

    Google Scholar 

  64. Ashe HL, Briscoe J (2006) The interpretation of morphogen gradients. Development 133(3):385–394

    Article  CAS  PubMed  Google Scholar 

  65. Williams N (2010) Bugs in sight. Curr Biol 20(10):R428–R429

    Article  CAS  Google Scholar 

  66. Cohen B, Wimmer EA, Cohen SM (1991) Early development of leg and wing primordia in the Drosophila embryo. Mech Dev 33(3):229–240

    Article  CAS  PubMed  Google Scholar 

  67. Robb JA (1969) Maintenance of imaginal discs of Drosophila melanogaster in chemically defined media. J Cell Biol 41(3):876–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Aldaz S, Escudero LM, Freeman M (2010) Live imaging of Drosophila imaginal disc development. Proc Natl Acad Sci 107(32):14217–14222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Repiso A, Bergantiños C, Corominas M, Serras F (2011) Tissue repair and regeneration in Drosophila imaginal discs. Develop Growth Differ 53(2):177–185

    Article  Google Scholar 

  70. Karpen GH, Schubiger G (1981) Extensive regulatory capabilities of a Drosophila imaginal disk blastema. Nature 294(5843):744

    Article  CAS  PubMed  Google Scholar 

  71. Held LI Jr, Held LI Jr (2005) Imaginal discs: the genetic and cellular logic of pattern formation, vol 39. Cambridge University Press, Cambridge

    Google Scholar 

  72. García-Bellido A, Ripoll P, Morata G (1973) Developmental compartmentalisation of the wing disk of Drosophila. Nat New Biol 245(147):251

    Article  PubMed  Google Scholar 

  73. Abbott LC, Karpen GH, Schubiger G (1981) Compartmental restrictions and blastema formation during pattern regulation in Drosophila imaginal leg discs. Dev Biol 87(1):64–75

    Article  CAS  PubMed  Google Scholar 

  74. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF (2000) The genome sequence of Drosophila melanogaster. Science 287(5461):2185–2195

    Article  PubMed  Google Scholar 

  75. Alexandre C, Baena-Lopez A, Vincent J-P (2014) Patterning and growth control by membrane-tethered wingless. Nature 505(7482):180

    Article  CAS  PubMed  Google Scholar 

  76. Bergantiños C, Vilana X, Corominas M, Serras F (2010) Imaginal discs: renaissance of a model for regenerative biology. BioEssays 32(3):207–217

    Article  PubMed  Google Scholar 

  77. Hadorn E (1968) Developmental capacity of embryonal blastema in Drosophila following cultivation in an adult host. Rev Suisse Zool 75:557–569

    CAS  PubMed  Google Scholar 

  78. Slack J (2003) Regeneration research today. Dev Dyn 226(2):162–166

    Article  CAS  PubMed  Google Scholar 

  79. Bryant PJ (1975) Pattern formation in the imaginal wing disc of Drosophila melanogaster: fate map, regeneration and duplication. J Exp Zool 193(1):49–77

    Article  CAS  PubMed  Google Scholar 

  80. Schubiger G (1971) Regeneration, duplication and transdetermination in fragments of the leg disc of Drosophila melanogaster. Dev Biol 26(2):277–295

    Article  CAS  PubMed  Google Scholar 

  81. Usui K, Simpson P (2000) Cellular basis of the dynamic behavior of the imaginal thoracic discs during Drosophila metamorphosis. Dev Biol 225(1):13–25

    Article  CAS  PubMed  Google Scholar 

  82. Ogienko A, Fedorova S, Baricheva E (2007) Basic aspects of ovarian development in Drosophila melanogaster. Russ J Genet 43(10):1120–1134

    Article  CAS  Google Scholar 

  83. Eliazer S, Buszczak M (2011) Finding a niche: studies from the Drosophila ovary. Stem Cell Res Ther 2(6):45

    Article  PubMed  PubMed Central  Google Scholar 

  84. Spradling A (1993) Developmental genetics of oogenesis. The development of Drosophila melanogaster

    Google Scholar 

  85. Decotto E, Spradling AC (2005) The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. Dev Cell 9(4):501–510

    Article  CAS  PubMed  Google Scholar 

  86. Lin H, Spradling AC (1993) Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Dev Biol 159(1):140–152

    Article  CAS  PubMed  Google Scholar 

  87. Cox DN, Chao A, Lin H (2000) Piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127(3):503–514

    CAS  PubMed  Google Scholar 

  88. King FJ, Szakmary A, Cox DN, Lin H (2001) Yb modulates the divisions of both germline and somatic stem cells through piwi-and hh-mediated mechanisms in the Drosophila ovary. Mol Cell 7(3):497–508

    Article  CAS  PubMed  Google Scholar 

  89. Kirilly D, Xie T (2007) The Drosophila ovary: an active stem cell community. Cell Res 17(1):15

    Article  CAS  PubMed  Google Scholar 

  90. Mena Jr V (2012) Characterization of the stem cell niche in Drosophila testes

    Google Scholar 

  91. Papagiannouli F (2014) Male stem cell niche and spermatogenesis in the Drosophila testis—a tale of germline-soma communication. In: Adult stem cell niches. IntechOpen

    Google Scholar 

  92. Ueishi S, Shimizu H, Inoue YH (2009) Male germline stem cell division and spermatocyte growth require insulin signaling in Drosophila. Cell Struct Funct:0904160039–0904160039

    Google Scholar 

  93. Kiger AA, White-Cooper H, Fuller MT (2000) Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 407(6805):750

    Article  CAS  PubMed  Google Scholar 

  94. Schulz C, Wood CG, Jones DL, Tazuke SI, Fuller MT (2002) Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells. Development 129(19):4523–4534

    CAS  PubMed  Google Scholar 

  95. de Cuevas M, Matunis EL (2011) The stem cell niche: lessons from the Drosophila testis. Development 138(14):2861–2869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wilk R, Murthy SU, Yan H, Krause HM (2010) In situ hybridization: fruit fly embryos and tissues. Current Protocols Essential Laboratory Techniques 4(1):9.3. 1-9.3. 24

    Google Scholar 

Download references

Acknowledgements

NN and GD are thankful to DST/INSPIRE Fellowship for financial support. MM lab is supported by Grant No. BT/PR21857/NNT/28/1238/2017, EMR/2017/003054, Odisha DST 3325/ST(BIO)-02/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nayak, N., Dhar, G., Mishra, M. (2020). Isolation of Gut, Imaginal Disc, Fat Body, Ovary and Testes in Various Developmental Stages of Drosophila. In: Mishra, M. (eds) Fundamental Approaches to Screen Abnormalities in Drosophila. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9756-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9756-5_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9755-8

  • Online ISBN: 978-1-4939-9756-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics