Skip to main content

Fourier Transform Infrared Spectroscopy: A Novel Approach for Biomolecular Characterization of Drosophila Hemolymph

  • Protocol
  • First Online:
  • 472 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Fourier transform infrared (FTIR) spectroscopy is the technique which allows the analysis of a biological sample or biofluid to characterize the functional group. It reveals the molecular information without disturbing the chemical nature of the biological sample. It doesn’t require any labeling. We have used vibrational spectroscopic techniques to analyse the functional group of hemolymph. We used various treatments in flies to see the alteration of functional group in the hemolymph. Flies were fed with bacteria-contaminated food and nanoparticle (alumina NP and lignin NP) mixed food to check the alteration of the biochemical composition of hemolymph. Parameters like the composition of lipid, protein, nucleic acid and DNA undergo changes with respect to chemicals. The current protocol describes the analysis of carbohydrate, lipid, protein, nucleic acid and DNA damage from the hemolymph using FTIR.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sivanantharajah L, Mudher A, Shepherd D (2019) An evaluation of Drosophila as a model system for studying tauopathies such as Alzheimer’s disease. J Neurosci Methods 319:77–88

    Article  CAS  Google Scholar 

  2. Shishido T et al (2019) Synphilin-1 has neuroprotective effects on MPP+-induced Parkinson’s disease model cells by inhibiting ROS production and apoptosis. Neurosci Lett 690:145–150

    Article  CAS  Google Scholar 

  3. Bason M et al (2019) Astrocytic expression of the chaperone DNAJB6 results in non-cell autonomous protection in Huntington’s disease. Neurobiol Dis 124:108–117

    Article  CAS  Google Scholar 

  4. Saada A (2019) Sea squirt alternative oxidase bypasses fatal mitochondrial heart disease. EMBO Mol Med 11(1):e9962

    Article  Google Scholar 

  5. Zelig U et al (2009) Diagnosis of cell death by means of infrared spectroscopy. Biophys J 97(7):2107–2114

    Article  CAS  Google Scholar 

  6. Diem M, Griffiths PR, Chalmers JM (2008) Vibrational spectroscopy for medical diagnosis, vol 40. Wiley, Chichester

    Google Scholar 

  7. Boydston-White S et al (1999) Infrared spectroscopy of human tissue. V. Infrared spectroscopic studies of myeloid leukemia (ML-1) cells at different phases of the cell cycle. Biospectroscopy 5(4):219–227

    Article  CAS  Google Scholar 

  8. Le Gal J-M, Morjani H, Manfait M (1993) Ultrastructural appraisal of the multidrug resistance in K562 and LR73 cell lines from Fourier transform infrared spectroscopy. Cancer Res 53(16):3681–3686

    PubMed  Google Scholar 

  9. Jackson M, Mantsch HH (1996) Biomedical infrared spectroscopy. In: Infrared spectroscopy of biomolecules. Wiley, New York, pp 311–340

    Google Scholar 

  10. Walsh MJ et al (2008) FTIR microspectroscopy coupled with two-class discrimination segregates markers responsible for inter-and intra-category variance in exfoliative cervical cytology. Biomark Insights 3:BMI. S592

    Article  Google Scholar 

  11. Bellisola G, Sorio C (2012) Infrared spectroscopy and microscopy in cancer research and diagnosis. Am J Cancer Res 2(1):1

    CAS  PubMed  Google Scholar 

  12. Shivu B et al (2013) Distinct β-sheet structure in protein aggregates determined by ATR–FTIR spectroscopy. Biochemistry 52(31):5176–5183

    Article  CAS  Google Scholar 

  13. Surewicz WK, Mantsch HH (1988) New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol 952:115–130

    Article  CAS  Google Scholar 

  14. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta (BBA)-Bioenerg 1767(9):1073–1101

    Article  CAS  Google Scholar 

  15. Ami D et al (2016) In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: a FTIR microspectroscopy study. Sci Rep 6:29096

    Article  CAS  Google Scholar 

  16. Bruun SW et al (2006) Correcting attenuated total reflection–Fourier transform infrared spectra for water vapor and carbon dioxide. Appl Spectrosc 60(9):1029–1039

    Article  CAS  Google Scholar 

  17. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39(8):549–559

    Article  CAS  Google Scholar 

  18. Haris PI, Severcan F (1999) FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B Enzym 7(1–4):207–221

    Article  CAS  Google Scholar 

  19. Lipiec E et al (2012) FTIR microspectroscopy in studies of DNA damage induced by proton microbeam in single PC-3 cells. Acta Phys Pol A 121:506–509

    Article  Google Scholar 

  20. Bassan P et al (2009) Reflection contributions to the dispersion artefact in FTIR spectra of single biological cells. Analyst 134(6):1171–1175

    Article  CAS  Google Scholar 

  21. Banyay M, Sarkar M, Gräslund A (2003) A library of IR bands of nucleic acids in solution. Biophys Chem 104(2):477–488

    Article  CAS  Google Scholar 

  22. Dovbeshko GI et al (2000) FTIR spectroscopy studies of nucleic acid damage. Talanta 53(1):233–246

    Article  CAS  Google Scholar 

  23. Errico S et al (2019) A novel experimental approach for liver analysis in rats exposed to Bisphenol A by means of LC-mass spectrometry and infrared spectroscopy. J Pharm Biomed Anal 165:207–212

    Article  CAS  Google Scholar 

  24. Dreissig I et al (2009) Quantification of brain lipids by FTIR spectroscopy and partial least squares regression. Spectrochim Acta A Mol Biomol Spectrosc 71(5):2069–2075

    Article  Google Scholar 

Download references

Acknowledgements

SP is thankful to MHRD for the financial support. MM lab is supported by Grant No. BT/PR21857/NNT/28/1238/2017, EMR/2017/003054, Odisha DBT 3325/ST (BIO)-02/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paikra, S., Mishra, M. (2020). Fourier Transform Infrared Spectroscopy: A Novel Approach for Biomolecular Characterization of Drosophila Hemolymph. In: Mishra, M. (eds) Fundamental Approaches to Screen Abnormalities in Drosophila. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9756-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9756-5_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9755-8

  • Online ISBN: 978-1-4939-9756-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics