Skip to main content

Molecular Approaches for Analysis of Drosophila MicroRNAs

  • Protocol
  • First Online:
Fundamental Approaches to Screen Abnormalities in Drosophila

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

MicroRNAs (miRNAs) belong to a class of small non-coding endogenous RNAs that regulate gene expression at the post-transcriptional level. These small RNAs recognize sequences within 3′ untranslated regions of target mRNAs in complexes referred to as a miRNA-induced silencing complex (miRISC). Drosophila melanogaster has served as an indispensable model system for defining the diverse biological roles of miRNAs, their mechanism of action as well as the role of miRNA biogenesis factors. In this chapter we describe some of the assays used for molecular analysis of Drosophila miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524

    Article  CAS  PubMed  Google Scholar 

  2. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139

    Article  CAS  PubMed  Google Scholar 

  3. Lee Y et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  CAS  PubMed  Google Scholar 

  4. Denli AM et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235

    Article  CAS  PubMed  Google Scholar 

  5. Saito K et al (2005) Processing of pre-microRNAs by the Dicer-1-loquacious complex in Drosophila cells. PLoS Biol 3(7):e235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Jiang F et al (2005) Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev 19(14):1674–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fukunaga R et al (2012) Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 151(3):533–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Forstemann K et al (2007) Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130(2):287–297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Tomari Y, Du T, Zamore PD (2007) Sorting of Drosophila small silencing RNAs. Cell 130(2):299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lai EC (2002) Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30(4):363–364

    Article  CAS  PubMed  Google Scholar 

  11. Brennecke J et al (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sokol NS, Ambros V (2005) Mesodermally expressed Drosophila microRNA-1 is regulated by twist and is required in muscles during larval growth. Genes Dev 19(19):2343–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chawla G, Sokol NS (2012) Hormonal activation of let-7-C microRNAs via EcR is required for adult Drosophila melanogaster morphology and function. Development 139(10):1788–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Q et al (2017) Identification of active miRNA promoters from nuclear run-on RNA sequencing. Nucleic Acids Res 45(13):e121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aboobaker AA et al (2005) Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci U S A 102(50):18017–18022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14(8):1539–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guil S, Caceres JF (2007) The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 14(7):591–596

    Article  CAS  PubMed  Google Scholar 

  19. Trabucchi M et al (2009) The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459(7249):1010–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heo I et al (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32(2):276–284

    Article  CAS  PubMed  Google Scholar 

  21. Tang X et al (2010) Phosphorylation of the RNase III enzyme Drosha at Serine300 or Serine302 is required for its nuclear localization. Nucleic Acids Res 38(19):6610–6619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang X et al (2013) Acetylation of drosha on the N-terminus inhibits its degradation by ubiquitination. PLoS One 8(8):e72503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Herbert KM et al (2013) Phosphorylation of DGCR8 increases its intracellular stability and induces a progrowth miRNA profile. Cell Rep 5(4):1070–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berezikov E et al (2011) Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res 21(2):203–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chawla G, Sokol NS (2014) ADAR mediates differential expression of polycistronic microRNAs. Nucleic Acids Res 42(8):5245–5255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou L et al (2018) Importance of miRNA stability and alternative primary miRNA isoforms in gene regulation during Drosophila development. Elife:7

    Google Scholar 

  27. Carthew RW, Agbu P, Giri R (2017) MicroRNA function in Drosophila melanogaster. Semin Cell Dev Biol 65:29–37

    Article  CAS  PubMed  Google Scholar 

  28. Pal AS, Kasinski AL (2017) Animal models to study MicroRNA function. Adv Cancer Res 135:53–118

    Article  PubMed  PubMed Central  Google Scholar 

  29. Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9(11):831–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karres JS et al (2007) The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131(1):136–145

    Article  CAS  PubMed  Google Scholar 

  31. Chawla G et al (2016) A let-7-to-miR-125 MicroRNA switch regulates neuronal integrity and lifespan in Drosophila. PLoS Genet 12(8):e1006247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bushati N et al (2008) Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr Biol 18(7):501–506

    Article  CAS  PubMed  Google Scholar 

  33. Giraldez AJ et al (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312(5770):75–79

    Article  CAS  PubMed  Google Scholar 

  34. Brennecke J et al (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113(1):25–36

    Article  CAS  PubMed  Google Scholar 

  35. Thompson BJ, Cohen SM (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126(4):767–774

    Article  CAS  PubMed  Google Scholar 

  36. Xu P et al (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13(9):790–795

    Article  CAS  PubMed  Google Scholar 

  37. Zhang W, Cohen SM (2013) The Hippo pathway acts via p53 and microRNAs to control proliferation and proapoptotic gene expression during tissue growth. Biol Open 2(8):822–828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Li Y et al (2006) MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev 20(20):2793–2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li X et al (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137(2):273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu YC et al (2012) Let-7-complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via chinmo. Dev Cell 23(1):202–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu N et al (2012) The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482(7386):519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hyun S et al (2009) Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 139(6):1096–1108

    Article  CAS  PubMed  Google Scholar 

  43. Varghese J, Lim SF, Cohen SM (2010) Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe. Genes Dev 24(24):2748–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weng R, Cohen SM (2012) Drosophila miR-124 regulates neuroblast proliferation through its target anachronism. Development 139(8):1427–1434

    Article  CAS  PubMed  Google Scholar 

  45. Nahvi A, Shoemaker CJ, Green R (2009) An expanded seed sequence definition accounts for full regulation of the hid 3′ UTR by bantam miRNA. RNA 15(5):814–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vodala S et al (2012) The oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs. Cell Metab 16(5):601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weng R et al (2013) miR-124 controls male reproductive success in Drosophila. elife 2:e00640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yu JY et al (2009) Dicer-1-dependent Dacapo suppression acts downstream of insulin receptor in regulating cell division of Drosophila germline stem cells. Development 136(9):1497–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hilgers V, Bushati N, Cohen SM (2010) Drosophila microRNAs 263a/b confer robustness during development by protecting nascent sense organs from apoptosis. PLoS Biol 8(6):e1000396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chen W et al (2014) Regulation of Drosophila circadian rhythms by miRNA let-7 is mediated by a regulatory cycle. Nat Commun 5:5549

    Article  CAS  PubMed  Google Scholar 

  51. Bejarano F et al (2012) A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development 139(15):2821–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schertel C et al (2012) Functional characterization of Drosophila microRNAs by a novel in vivo library. Genetics 192(4):1543–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Szuplewski S et al (2012) MicroRNA transgene overexpression complements deficiency-based modifier screens in Drosophila. Genetics 190(2):617–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen YW et al (2014) Systematic study of Drosophila microRNA functions using a collection of targeted knockout mutations. Dev Cell 31(6):784–800

    Article  CAS  PubMed  Google Scholar 

  55. Agarwal V et al (2018) Predicting microRNA targeting efficacy in Drosophila. Genome Biol 19(1):152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Rio DC (2014) Northern blots for small RNAs and microRNAs. Cold Spring Harb Protoc 2014(7):793–797

    Article  PubMed  Google Scholar 

  57. Li C, Zamore PD (2018) Analysis of small RNAs by Northern hybridization. Cold Spring Harb Protoc 2018(8):pdb prot097493

    Article  Google Scholar 

  58. Laneve P, Giangrande A (2014) Enhanced Northern Blot detection of small RNA species in Drosophila melanogaster. J Vis Exp (90)

    Google Scholar 

  59. Varallyay E, Burgyan J, Havelda Z (2007) Detection of microRNAs by Northern blot analyses using LNA probes. Methods 43(2):140–145

    Article  CAS  PubMed  Google Scholar 

  60. Chen C et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Griffiths-Jones S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144

    Article  CAS  PubMed  Google Scholar 

  62. Ruby JG et al (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17(12):1850–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grun D et al (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1(1):e13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Schnall-Levin M et al (2010) Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3'UTRs. Proc Natl Acad Sci U S A 107(36):15751–15756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Horwich MD, Zamore PD (2008) Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells. Nat Protoc 3(10):1537–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang JS et al (2014) Intertwined pathways for Argonaute-mediated microRNA biogenesis in Drosophila. Nucleic Acids Res 42(3):1987–2002

    Article  CAS  PubMed  Google Scholar 

  67. Okamura K et al (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1):89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the efforts of all researchers involved in establishing and refining the techniques and assays used to analyse miRNA function. This work was supported by the Wellcome Trust/DBT India Alliance Fellowship [grant number IA/I(S)/17/1/503085] awarded to GC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetanjali Chawla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pandey, M., Bansal, S., Chawla, G. (2020). Molecular Approaches for Analysis of Drosophila MicroRNAs. In: Mishra, M. (eds) Fundamental Approaches to Screen Abnormalities in Drosophila. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9756-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9756-5_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9755-8

  • Online ISBN: 978-1-4939-9756-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics