Skip to main content

Machine Learning to Predict Binding Affinity

  • Protocol
  • First Online:
Docking Screens for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2053))

Abstract

Recent progress in the development of scientific libraries with machine-learning techniques paved the way for the implementation of integrated computational tools to predict ligand-binding affinity. The prediction of binding affinity uses the atomic coordinates of protein-ligand complexes. These new computational tools made application of a broad spectrum of machine-learning techniques to study protein-ligand interactions possible. The essential aspect of these machine-learning approaches is to train a new computational model by using technologies such as supervised machine-learning techniques, convolutional neural network, and random forest to mention the most commonly applied methods. In this chapter, we focus on supervised machine-learning techniques and their applications in the development of protein-targeted scoring functions for the prediction of binding affinity. We discuss the development of the program SAnDReS and its application to the creation of machine-learning models to predict inhibition of cyclin-dependent kinase and HIV-1 protease. Moreover, we describe the scoring function space, and how to use it to explain the development of targeted scoring functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nanard M, Nanard J (1985) A user-friendly biological workstation. Biochimie 67:429–432

    Article  CAS  PubMed  Google Scholar 

  2. Hirst JD, King RD, Sternberg MJ (1994) Quantitative structure-activity relationships by neural networks and inductive logic programming. I. The inhibition of dihydrofolate reductase by pyrimidines. J Comput Aided Mol Des 8:405–420

    Article  CAS  PubMed  Google Scholar 

  3. Hirst JD, King RD, Sternberg MJ (1994) Quantitative structure-activity relationships by neural networks and inductive logic programming. II. The inhibition of dihydrofolate reductase by triazines. J Comput Aided Mol Des 8:421–432

    Article  CAS  PubMed  Google Scholar 

  4. Heck GS, Pintro VO, Pereira RR, de Ávila MB, Levin NMB, de Azevedo WF (2017) Supervised machine learning methods applied to predict ligand-binding affinity. Curr Med Chem 24:2459–2470

    Article  CAS  PubMed  Google Scholar 

  5. Levin NM, Pintro VO, de Ávila MB, de Mattos BB, De Azevedo WF Jr (2017) Understanding the structural basis for inhibition of cyclin-dependent kinases. New pieces in the molecular puzzle. Curr Drug Targets 18:1104–1111

    Article  PubMed  CAS  Google Scholar 

  6. de Azevedo WF Jr (2016) Opinion paper: targeting multiple cyclin-dependent kinases (CDKs): a new strategy for molecular docking studies. Curr Drug Targets 17:2

    Article  PubMed  CAS  Google Scholar 

  7. Ain QU, Aleksandrova A, Roessler FD, Ballester PJ (2015) Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip Rev Comput Mol Sci 5:405–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xue LC, Dobbs D, Bonvin AM, Honavar V (2015) Computational prediction of protein interfaces: a review of data driven methods. FEBS Lett 589:3516–3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  10. Li H, Peng J, Leung Y, Leung KS, Wong MH, Lu G et al (2018) The impact of protein structure and sequence similarity on the accuracy of machine-learning scoring functions for binding affinity prediction. Biomolecules 8:12

    Article  PubMed Central  CAS  Google Scholar 

  11. Bitencourt-Ferreira G, de Azevedo WF Jr (2018) Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes. Biophys Chem 240:63–69

    Article  CAS  PubMed  Google Scholar 

  12. Jiménez J, Škalič M, Martínez-Rosell G, De Fabritiis G (2018) KDEEP: protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J Chem Inf Model 58:287–296

    Article  PubMed  CAS  Google Scholar 

  13. de Ávila MB, de Azevedo WF Jr (2018) Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase. Chem Biol Drug Des 92:1468–1474

    Article  CAS  PubMed  Google Scholar 

  14. Amaral MEA, Nery LR, Leite CE, de Azevedo Junior WF, Campos MM (2018) Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes. Invest New Drugs 36:782–796

    Article  CAS  PubMed  Google Scholar 

  15. Levin NMB, Pintro VO, Bitencourt-Ferreira G, Mattos BB, Silvério AC, de Azevedo WF Jr (2018) Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys Chem 235:1–8

    Article  CAS  PubMed  Google Scholar 

  16. Freitas PG, Elias TC, Pinto IA, Costa LT, de Carvalho PVSD, Omote DQ et al (2018) Computational approach to the discovery of phytochemical molecules with therapeutic potential targets to the PKCZ protein. Lett Drug Des Discov 15:488–499

    Article  CAS  Google Scholar 

  17. Pintro VO, Azevedo WF (2017) Optimized virtual screening workflow. Towards target-based polynomial scoring functions for HIV-1 protease. Comb Chem High Throughput Screen 20:820–827

    Article  CAS  PubMed  Google Scholar 

  18. de Ávila MB, Xavier MM, Pintro VO, de Azevedo WF (2017) Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem Biophys Res Commun 494:305–310

    Article  PubMed  CAS  Google Scholar 

  19. Zhang L, Ai HX, Li SM, Qi MY, Zhao J, Zhao Q et al (2017) Virtual screening approach to identifying influenza virus neuraminidase inhibitors using molecular docking combined with machine-learning-based scoring function. Oncotarget 8:83142–83154

    PubMed  PubMed Central  Google Scholar 

  20. Xavier MM, Heck GS, de Avila MB, Levin NM, Pintro VO, Carvalho NL et al (2016) SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb Chem High Throughput Screen 19:801–812

    Article  CAS  PubMed  Google Scholar 

  21. Wójcikowski M, Ballester PJ, Siedlecki P (2017) Performance of machine-learning scoring functions in structure-based virtual screening. Sci Rep 7:46710

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sunseri J, King JE, Francoeur PG, Koes DR (2019) Convolutional neural network scoring and minimization in the D3R 2017 community challenge. J Comput Aided Mol Des 33(1):19–34. https://doi.org/10.1007/s10822-018-0133-y

    Article  CAS  PubMed  Google Scholar 

  23. Ragoza M, Hochuli J, Idrobo E, Sunseri J, Koes DR (2017) Protein-ligand scoring with convolutional neural networks. J Chem Inf Model 57:942–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hochuli J, Helbling A, Skaist T, Ragoza M, Koes DR (2018) Visualizing convolutional neural network protein-ligand scoring. J Mol Graph Model 84:96–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Afifi K, Al-Sadek AF (2018) Improving classical scoring functions using random forest: the non-additivity of free energy terms' contributions in binding. Chem Biol Drug Des 92:1429–1434

    Article  CAS  PubMed  Google Scholar 

  26. Wang C, Zhang Y (2017) Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J Comput Chem 38:169–177

    Article  PubMed  CAS  Google Scholar 

  27. Li H, Leung KS, Wong MH, Ballester PJ (2015) Low-quality structural and interaction data improves binding affinity prediction via random forest. Molecules 20:10947–10962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khamis MA, Gomaa W, Ahmed WF (2015) Machine learning in computational docking. Artif Intell Med 63:135–152

    Article  PubMed  Google Scholar 

  29. Li H, Leung KS, Wong MH, Ballester PJ (2015) Improving AutoDock Vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Mol Inform 34:115–126

    Article  PubMed  CAS  Google Scholar 

  30. Zilian D, Sotriffer CA (2013) SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J Chem Inf Model 53:1923–1933

    Article  CAS  PubMed  Google Scholar 

  31. Ballester PJ, Mitchell JB (2010) A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 26:1169–1175

    Article  CAS  PubMed  Google Scholar 

  32. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321

    Article  CAS  PubMed  Google Scholar 

  33. Heberlé G, de Azevedo WF Jr (2011) Bio-inspired algorithms applied to molecular docking simulations. Curr Med Chem 18:1339–1352

    Article  PubMed  Google Scholar 

  34. De Azevedo WF Jr (2010) MolDock applied to structure-based virtual screening. Curr Drug Targets 11:327–334

    Article  PubMed  Google Scholar 

  35. Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins 8:195–202

    Article  CAS  PubMed  Google Scholar 

  36. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    Article  CAS  PubMed  Google Scholar 

  37. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK et al (1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  38. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim SH, Schulze-Gahmen U, Brandsen J, de Azevedo Júnior WF (1996) Structural basis for chemical inhibition of CDK2. Prog Cell Cycle Res 2:137–145

    Article  CAS  PubMed  Google Scholar 

  41. De Azevedo WF Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH (1996) Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci U S A 93:2735–2740

    Article  PubMed  PubMed Central  Google Scholar 

  42. De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH (1997) Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem 243:518–526

    Article  PubMed  Google Scholar 

  43. de Ávila MB, Bitencourt-Ferreira G, de Azevedo WF Jr (2018) Structural basis for inhibition of enoyl-[acyl carrier protein] reductase (InhA) from Mycobacterium tuberculosis. Curr Med Chem. https://doi.org/10.2174/0929867326666181203125229

  44. Volkart PA, Bitencourt-Ferreira G, Souto AA, de Azevedo WF (2019) Cyclin-dependent kinase 2 in cellular senescence and cancer. A structural and functional review. Curr Drug Targets 20(7):716–726. https://doi.org/10.2174/1389450120666181204165344

    Article  CAS  PubMed  Google Scholar 

  45. Russo S, De Azevedo WF (2018) Advances in the understanding of the cannabinoid receptor 1 - focusing on the inverse agonists interactions. Curr Med Chem. https://doi.org/10.2174/0929867325666180417165247

    Article  PubMed  Google Scholar 

  46. Pinto-Junior VR, Osterne VJ, Santiago MQ, Correia JL, Pereira-Junior FN, Leal RB et al (2017) Structural studies of a vasorelaxant lectin from Dioclea reflexa Hook seeds: Crystal structure, molecular docking and dynamics. Int J Biol Macromol 98:12–23

    Article  CAS  PubMed  Google Scholar 

  47. Abbasi WA, Asif A, Ben-Hur A, Minhas FUAA (2018) Learning protein binding affinity using privileged information. BMC Bioinformatics 19:425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumari M, Tiwari N, Chandra S, Subbarao N (2018) Comparative analysis of machine learning based QSAR models and molecular docking studies to screen potential anti-tubercular inhibitors against InhA of Mycobacterium tuberculosis. Int J Comput Biol Drug Des 11:3

    Google Scholar 

  49. Masand VH, El-Sayed NNE, Bambole MU, Patil VR, Thakur SD (2019) Multiple quantitative structure-activity relationships (QSARs) analysis for orally active trypanocidal N-myristoyltransferase inhibitors. J Mol Struct 1175:481–487

    Article  CAS  Google Scholar 

  50. Maltarollo VG, Kronenberger T, Windshugel B, Wrenger C, Trossini GHG, Honorio KM (2018) Advances and challenges in drug design of PPARδ ligands. Curr Drug Targets 19:144–154

    Article  CAS  PubMed  Google Scholar 

  51. Lemos A, Melo R, Preto AJ, Almeida JG, Moreira IS, Dias Soeiro Cordeiro MN (2018) In silico studies targeting G-protein coupled receptors for drug research against Parkinson’s disease. Curr Neuropharmacol 16:786–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ribeiro FF, Mendonca Junior FJB, Ghasemi JB, Ishiki HM, Scotti MT, Scotti L (2018) Docking of natural products against neurodegenerative diseases: general concepts. Comb Chem High Throughput Screen 21:152–160

    Article  CAS  PubMed  Google Scholar 

  53. Aleksandrov A, Myllykallio H (2019) Advances and challenges in drug design against tuberculosis: application of in silico approaches. Expert Opin Drug Discov 14:35–46

    Article  CAS  PubMed  Google Scholar 

  54. Safarizadeh H, Garkani-Nejad Z (2019) Investigation of MI-2 analogues as MALT1 inhibitors to treat of diffuse large B-Cell 0lymphoma through combined molecular dynamics simulation, molecular docking and QSAR techniques and design of new inhibitors. J Mol Struct 1180:708–722

    Article  CAS  Google Scholar 

  55. Joy M, Elrashedy AA, Mathew B, Pillay AS, Mathews A, Dev S et al (2018) Discovery of new class of methoxy carrying isoxazole derivatives as COX-II inhibitors: Investigation of a detailed molecular dynamics study. J Mol Struct 1157:19–28

    Article  CAS  Google Scholar 

  56. Leal RB, Pinto-Junior VR, Osterne VJS, Wolin IAV, Nascimento APM, Neco AHB et al (2018) Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. Int J Biol Macromol 114:64–76

    Article  CAS  PubMed  Google Scholar 

  57. Cavada BS, Araripe DA, Silva IB, Pinto-Junior VR, Osterne VJS, Neco AHB et al (2016) Structural studies and nociceptive activity of a native lectin from Platypodium elegans seeds (nPELa). Int J Biol Macromol 107:236–246

    Article  CAS  Google Scholar 

  58. Usman MSM, Bharbhuiya TK, Mondal S, Rani S, Kyal C, Kumari R (2018) Combined protein and ligand based physicochemical aspects of molecular recognition for the discovery of CDK9 inhibitor. Gene Rep 13:212–219

    Article  Google Scholar 

  59. Neco AHB, Pinto-Junior VR, Araripe DA, Santiago MQ, Osterne VJS, Lossio CF et al (2018) Structural analysis, molecular docking and molecular dynamics of an edematogenic lectin from Centrolobium microchaete seeds. Int J Biol Macromol 117:124–133

    Article  CAS  PubMed  Google Scholar 

  60. Nowaczyk A, Fijałkowski Ł, Zaręba P, Sałat K (2018) Docking and pharmacodynamic studies on hGAT1 inhibition activity in the presence of selected neuronal and astrocytic inhibitors. Part I. J Mol Graph Model 85:171–181

    Article  CAS  PubMed  Google Scholar 

  61. Tong J, Lei S, Qin S, Wang Y (2018) QSAR studies of TIBO derivatives as HIV-1 reverse transcriptase inhibitors using HQSAR, CoMFA and CoMSIA. J Mol Struct 1168:56–64

    Article  CAS  Google Scholar 

  62. Azevedo LS, Moraes FP, Xavier MM, Pantoja EO, Villavicencio B, Finck JA et al (2012) Recent progress of molecular docking simulations applied to development of drugs. Curr Bioinform 7:352–365

    Article  CAS  Google Scholar 

  63. Dias R, de Azevedo WF Jr (2008) Molecular docking algorithms. Curr Drug Targets 9:1040–1047

    Article  CAS  PubMed  Google Scholar 

  64. Breda A, Basso LA, Santos DS, de Azevedo WF Jr (2008) Virtual screening of drugs: score functions, docking, and drug design. Curr Comput Aided Drug Des 4:265–272

    Article  CAS  Google Scholar 

  65. Böhm HJ (1993) A novel computational tool for automated structure-based drug design. J Mol Recognit 6:131–137

    Article  PubMed  Google Scholar 

  66. Böhm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8:243–256

    Article  PubMed  Google Scholar 

  67. Böhm HJ (1996) Towards the automatic design of synthetically accessible protein ligands: peptides, amides and peptidomimetics. J Comput Aided Mol Des 10:265–272

    Article  PubMed  Google Scholar 

  68. Stahl M, Böhm HJ (1998) Development of filter functions for protein-ligand docking. J Mol Graph Model 16:121–132

    Article  CAS  PubMed  Google Scholar 

  69. Klebe G, Böhm HJ (1997) Energetic and entropic factors determining binding affinity in protein-ligand complexes. J Recept Signal Transduct Res 17:459–473

    Article  CAS  PubMed  Google Scholar 

  70. Böhm HJ, Banner DW, Weber L (1999) Combinatorial docking and combinatorial chemistry: design of potent non-peptide thrombin inhibitors. J Comput Aided Mol Des 13:51–56

    Article  PubMed  Google Scholar 

  71. Korb O, Stützle T, Exner TE (2009) Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model 49:84–96

    Article  CAS  PubMed  Google Scholar 

  72. Dias R, Timmers LF, Caceres RA, de Azevedo WF Jr (2008) Evaluation of molecular docking using polynomial empirical scoring functions. Curr Drug Targets 9:1062–1070

    Article  CAS  PubMed  Google Scholar 

  73. de Azevedo WF Jr, Dias R (2008) Evaluation of ligand-binding affinity using polynomial empirical scoring functions. Bioorg Med Chem 16:9378–9382

    Article  PubMed  CAS  Google Scholar 

  74. Legendre AM (1805) Nouvelle méthodes pour la déterminiation des orbites des comètes. Courcier, Paris

    Google Scholar 

  75. Bell J (2015) Machine learning. Hands-on for developers and technical professionals. Wiley, Indianapolis, IN

    Google Scholar 

  76. Bruce P, Bruce A (2017) Practical statistics for data scientists. 50 essential concepts. O’Reilly Media, Sebastopol

    Google Scholar 

  77. Tikhonov AN (1963) On the regularization of ill-posed problems. Dokl Akad Nauk SSSR 153:49–52

    Google Scholar 

  78. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Series B Stat Methodol 58:267–288

    Google Scholar 

  79. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Series B Stat Methodol 67:301–320

    Article  Google Scholar 

  80. Lennard-Jones JE (1931) Cohesion. Proc Phys Soc 43:461–482

    Article  CAS  Google Scholar 

  81. Zar JH (1972) Significance testing of the Spearman rank correlation coefficient. J Am Stat Assoc 67:578–580

    Article  Google Scholar 

  82. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  CAS  PubMed  Google Scholar 

  83. Murray AW (1994) Cyclin-dependent kinases: regulators of the cell cycle and more. Chem Biol 1:191–195

    Article  CAS  PubMed  Google Scholar 

  84. Canduri F, de Azevedo WF Jr (2005) Structural basis for interaction of inhibitors with cyclin-dependent kinase 2. Curr Comput Aided Drug Des 1:53–64

    Article  CAS  Google Scholar 

  85. Krystof V, Cankar P, Frysová I, Slouka J, Kontopidis G, Dzubák P et al (2006) 4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J Med Chem 49:6500–6509

    Article  CAS  PubMed  Google Scholar 

  86. De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH (1996) Crystal structure of cyclin-dependent kinase 2. Nature 363:595–602

    Article  Google Scholar 

  87. Schulze-Gahmen U, De Bondt HL, Kim SH (1996) High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: bound waters and natural ligand as guides for inhibitor design. J Med Chem 39:4540–4546

    Article  CAS  PubMed  Google Scholar 

  88. Pang X, Liu Z, Zhai G (2014) Advances in non-peptidomimetic HIV protease inhibitors. Curr Med Chem 21:1997–2011

    Article  CAS  PubMed  Google Scholar 

  89. Berti F, Frecer V, Miertus S (2014) Inhibitors of HIV-protease from computational design. A history of theory and synthesis still to be fully appreciated. Curr Pharm Des 20:3398–3411

    Article  CAS  PubMed  Google Scholar 

  90. Canduri F, Teodoro LG, Fadel V, Lorenzi CC, Hial V, Gomes RA et al (2001) Structure of human uropepsin at 2.45 A resolution. Acta Crystallogr D Biol Crystallogr 57:1560–1570

    Article  CAS  PubMed  Google Scholar 

  91. Miller M, Jaskólski M, Rao JK, Leis J, Wlodawer A (1989) Crystal structure of a retroviral protease proves relationship to aspartic protease family. Nature 337:576–579

    Article  CAS  PubMed  Google Scholar 

  92. Navia MA, Fitzgerald PM, McKeever BM, Leu CT, Heimbach JC, Herber WK et al (1989) Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 337:615–620

    Article  CAS  PubMed  Google Scholar 

  93. Liu F, Kovalevsky AY, Tie Y, Ghosh AK, Harrison RW, Weber IT (2008) Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir. J Mol Biol 381:102–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lv Z, Chu Y, Wang Y (2015) HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS (Auckl) 7:95–104

    CAS  Google Scholar 

  95. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  97. Korb O, Stutzle T, Exner TE (2009) Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model 49:84–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CNPq (Brazil) (308883/2014-4). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior—Brasil (CAPES)—Finance Code 001. GB-F acknowledges support from PUCRS/BPA fellowship. WFA is a senior researcher for CNPq (Brazil) (Process Numbers: 308883/2014-4 and 309029/2018-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Filgueira de Azevedo Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bitencourt-Ferreira, G., de Azevedo, W.F. (2019). Machine Learning to Predict Binding Affinity. In: de Azevedo Jr., W. (eds) Docking Screens for Drug Discovery. Methods in Molecular Biology, vol 2053. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9752-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9752-7_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9751-0

  • Online ISBN: 978-1-4939-9752-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics