Skip to main content

Building Machine-Learning Scoring Functions for Structure-Based Prediction of Intermolecular Binding Affinity

  • Protocol
  • First Online:
Docking Screens for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2053))

Abstract

Molecular docking enables large-scale prediction of whether and how small molecules bind to a macromolecular target. Machine-learning scoring functions are particularly well suited to predict the strength of this interaction. Here we describe how to build RF-Score, a scoring function utilizing the machine-learning technique known as Random Forest (RF). We also point out how to use different data, features, and regression models using either R or Python programming languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang S-Y, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys 12:12899–12908

    Article  CAS  Google Scholar 

  2. Ballester PJ, Mitchell JBO (2010) A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 26:1169–1175

    Article  CAS  Google Scholar 

  3. Kramer C, Gedeck P (2010) Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets. J Chem Inf Model 50:1961–1969

    Article  CAS  Google Scholar 

  4. Ballester PJ, Mitchell JBO (2011) Comments on “leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets”: significance for the validation of scoring functions. J Chem Inf Model 51:1739–1741

    Article  CAS  Google Scholar 

  5. Kinnings SL, Liu N, Tonge PJ, Jackson RM, Xie L, Bourne PE (2011) A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Model 51:408–419

    Article  CAS  Google Scholar 

  6. Zilian D, Sotriffer CA (2013) SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J Chem Inf Model 53:1923–1933

    Article  CAS  Google Scholar 

  7. Ashtawy HM, Mahapatra NR (2015) A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein-ligand binding affinity prediction. IEEE/ACM Trans Comput Biol Bioinform 12:335–347

    Article  CAS  Google Scholar 

  8. Wójcikowski M, Zielenkiewicz P, Siedlecki P (2015) Open drug discovery toolkit (ODDT): a new open-source player in the drug discovery field. J Cheminform 7:26

    Article  Google Scholar 

  9. Pires DEV, Ascher DB (2016) CSM-lig: a web server for assessing and comparing protein-small molecule affinities. Nucleic Acids Res 44:W557–W561

    Article  CAS  Google Scholar 

  10. Ballester PJ, Schreyer A, Blundell TL (2014) Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity? J Chem Inf Model 54:944–955

    Article  CAS  Google Scholar 

  11. Li L, Wang B, Meroueh SO (2011) Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries. J Chem Inf Model 51:2132–2138

    Article  CAS  Google Scholar 

  12. Ding B, Wang J, Li N, Wang W (2013) Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening. J Chem Inf Model 53:114–122

    Article  CAS  Google Scholar 

  13. Zhan W, Li D, Che J, Zhang L, Yang B, Hu Y et al (2014) Integrating docking scores, interaction profiles and molecular descriptors to improve the accuracy of molecular docking: toward the discovery of novel Akt1 inhibitors. Eur J Med Chem 75:11–20

    Article  CAS  Google Scholar 

  14. Sun H, Pan P, Tian S, Xu L, Kong X, Li Y, Li D, Hou T (2016) Constructing and validating high-performance MIEC-SVM models in virtual screening for kinases: a better way for actives discovery. Sci Rep 6:24817

    Article  CAS  Google Scholar 

  15. Pereira JC, Caffarena ER, dos Santos CN (2016) Boosting docking-based virtual screening with deep learning. J Chem Inf Model 56:2495–2506

    Article  CAS  Google Scholar 

  16. Wójcikowski M, Ballester PJ, Siedlecki P (2017) Performance of machine-learning scoring functions in structure-based virtual screening. Sci Rep 7:46710

    Article  Google Scholar 

  17. Ragoza M, Hochuli J, Idrobo E, Sunseri J, Koes DR (2017) Protein–ligand scoring with convolutional neural networks. J Chem Inf Model 57:942–957

    Article  CAS  Google Scholar 

  18. Ain QU, Aleksandrova A, Roessler FD, Ballester PJ (2015) Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip Rev Comput Mol Sci 5:405–424

    Article  CAS  Google Scholar 

  19. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  20. Cheng T, Li X, Li Y, Liu Z, Wang R (2009) Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model 49:1079–1093

    Article  CAS  Google Scholar 

  21. Ahmed A, Smith RD, Clark JJ, Dunbar JB, Carlson HA (2015) Recent improvements to binding MOAD: a resource for protein-ligand binding affinities and structures. Nucleic Acids Res 43:465–469

    Article  Google Scholar 

  22. Li H, Leung K-S, Wong M-H, Ballester PJ (2015) Improving AutoDock Vina using random Forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Mol Inform 34:115–126

    Article  Google Scholar 

  23. Li H, Leung K-S, Wong M-H, Ballester PJ (2014) Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. BMC Bioinformatics 15:291

    Article  Google Scholar 

  24. Durrant JD, McCammon JA (2011) BINANA: a novel algorithm for ligand-binding characterization. J Mol Graph Model 29:888–893

    Article  CAS  Google Scholar 

  25. Li H, Leung K-S, Wong M-H, Ballester P (2015) Low-quality structural and interaction data improves binding affinity prediction via random Forest. Molecules 20:10947–10962

    Article  CAS  Google Scholar 

  26. Li H, Leung K-S, Wong M-H, Ballester PJ (2016) Correcting the impact of docking pose generation error on binding affinity prediction. BMC Bioinformatics 17:308

    Article  Google Scholar 

  27. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  28. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by INSERM and the Polish Ministry of Science and Higher Education POIG.02.02.00-14-024/08-00 and POIG.02.03.00-00-003/09-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Ballester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wójcikowski, M., Siedlecki, P., Ballester, P.J. (2019). Building Machine-Learning Scoring Functions for Structure-Based Prediction of Intermolecular Binding Affinity. In: de Azevedo Jr., W. (eds) Docking Screens for Drug Discovery. Methods in Molecular Biology, vol 2053. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9752-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9752-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9751-0

  • Online ISBN: 978-1-4939-9752-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics