Skip to main content

Mass Spectrometry-Based Characterization of Ub- and UbL-Modified Proteins

  • Protocol
  • First Online:
Mass Spectrometry Data Analysis in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2051))

Abstract

Regulation by ubiquitin (Ub) and ubiquitin-like (UbL) modifiers can confer their substrate proteins a myriad of assignments, such as inducing protein–protein interactions, the internalization of membrane proteins, or their degradation via the proteasome. The underlying code regulating those diverse endpoints appears to be based on the topology of the ubiquitin chains formed.

Experimental characterization of the specific regulation mediated by Ub and UbLs is not trivial. The substoichiometric levels of Ub- and UbL-modified proteins greatly limit their analytical detection in a background of more abundant proteins. Therefore, modified proteins or peptides must be enriched prior to any downstream detection analysis. For that purpose, we recently developed a GFP-tag based isolation strategy. Here we illustrate the usefulness of combining GFP-tag isolation strategy with mass spectrometry (MS) to identify Ub- and UbL-modified residues within the GFP-tagged protein, as well as to uncover the types of Ub and UbL chains formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229. https://doi.org/10.1146/annurev-biochem-060310-170328

    Article  CAS  PubMed  Google Scholar 

  2. Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26(4):399–422. https://doi.org/10.1038/cr.2016.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Terrell J, Shih S, Dunn R, Hicke L (1998) A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell 1(2):193–202

    Article  CAS  Google Scholar 

  4. Pham AD, Sauer F (2000) Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science 289(5488):2357–2360

    Article  CAS  Google Scholar 

  5. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428. https://doi.org/10.1152/physrev.00027.2001

    Article  CAS  PubMed  Google Scholar 

  6. Ciechanover A (2013) Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Bioorg Med Chem 21(12):3400–3410. https://doi.org/10.1016/j.bmc.2013.01.056

    Article  CAS  PubMed  Google Scholar 

  7. Hicke L (2001) Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2(3):195–201. https://doi.org/10.1038/35056583

    Article  CAS  PubMed  Google Scholar 

  8. Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I (2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5(5):461–466. https://doi.org/10.1038/ncb983

    Article  CAS  PubMed  Google Scholar 

  9. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19(1):94–102. https://doi.org/10.1093/emboj/19.1.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wickliffe KE, Williamson A, Meyer HJ, Kelly A, Rape M (2011) K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol 21(11):656–663. https://doi.org/10.1016/j.tcb.2011.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33(3):275–286. https://doi.org/10.1016/j.molcel.2009.01.014

    Article  CAS  PubMed  Google Scholar 

  12. Ramirez J, Lectez B, Osinalde N, Siva M, Elu N, Aloria K, Prochazkova M, Perez C, Martinez-Hernandez J, Barrio R, Saskova KG, Arizmendi JM, Mayor U (2018) Quantitative proteomics reveals neuronal ubiquitination of Rngo/Ddi1 and several proteasomal subunits by Ube3a, accounting for the complexity of Angelman syndrome. Hum Mol Genet 27(11):1955–1971. https://doi.org/10.1093/hmg/ddy103

    Article  CAS  PubMed  Google Scholar 

  13. Lee SY, Ramirez J, Franco M, Lectez B, Gonzalez M, Barrio R, Mayor U (2014) Ube3a, the E3 ubiquitin ligase causing Angelman syndrome and linked to autism, regulates protein homeostasis through the proteasomal shuttle Rpn10. Cell Mol Life Sci 71(14):2747–2758. https://doi.org/10.1007/s00018-013-1526-7

    Article  CAS  PubMed  Google Scholar 

  14. Ramirez J, Martinez A, Lectez B, Lee SY, Franco M, Barrio R, Dittmar G, Mayor U (2015) Proteomic analysis of the ubiquitin landscape in the drosophila embryonic nervous system and the adult photoreceptor cells. PLoS One 10(10):e0139083. https://doi.org/10.1371/journal.pone.0139083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Min M, Mevissen TE, De Luca M, Komander D, Lindon C (2015) Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages. Mol Biol Cell 26(24):4325–4332. https://doi.org/10.1091/mbc.E15-02-0102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beer LA, Liu P, Ky B, Barnhart KT, Speicher DW (2017) Efficient quantitative comparisons of plasma proteomes using label-free analysis with MaxQuant. Methods Mol Biol 1619:339–352. https://doi.org/10.1007/978-1-4939-7057-5_23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nielsen ML, Vermeulen M, Bonaldi T, Cox J, Moroder L, Mann M (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5(6):459–460. https://doi.org/10.1038/nmeth0608-459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Jabi Beaskoetxea, Kerman Aloria, and Jesus Mari Arizmendi for all their advice and support. The authors are grateful of the technical support provided by UPV/EHU SGIker (ERDF and ESF). This work was supported by Spanish MINECO [grant SAF2016-76898-P].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Mayor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Elu, N., Lectez, B., Ramirez, J., Osinalde, N., Mayor, U. (2020). Mass Spectrometry-Based Characterization of Ub- and UbL-Modified Proteins. In: Matthiesen, R. (eds) Mass Spectrometry Data Analysis in Proteomics. Methods in Molecular Biology, vol 2051. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9744-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9744-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9743-5

  • Online ISBN: 978-1-4939-9744-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics