Skip to main content

Low-Voltage Flow-Through Electroporation Membrane and Method

  • Protocol
  • First Online:
Electroporation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2050))

Abstract

Electroporation uses high electric field gradients to create pores within the membrane of living cells in order to deliver a substance, for example a gene, into the cytoplasm. To achieve such gradients, current electroporation devices deliver voltage pulses in the kV range to the cell medium. We describe here a new device based on gold-microtube membranes that can accomplish electroporation with voltage pulses that are orders of magnitude smaller, 4 V. The percentages of electroporated bacteria were found to be more than an order of magnitude higher than obtained with a commercial electroporator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schoenbach KH, Peterkin FE, Alden RW, Beebe SJ (1997) The effect of pulsed electric fields on biological cells: experiments and applications. IEEE Trans Plasma Sci 25(2):284–292. https://doi.org/10.1109/27.602501

    Article  Google Scholar 

  2. Kanduser M, Miklavcic D (2008) Electroporation in biological cell and tissue: an overview. In: Vorobiev E, Lebovka N (eds) Electrotechnologies for extraction from food plants and biomaterials, Food Engineering Series, vol 233. Springer, New York, NY, pp 1–37

    Google Scholar 

  3. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41(2):135–160. https://doi.org/10.1016/s0302-4598(96)05062-3

    Article  CAS  Google Scholar 

  4. Kotnik T, Frey W, Sack M, Meglic SH, Peterka M, Miklavcic D (2015) Electroporation-based applications in biotechnology. Trends Biotechnol 33(8):480–488. https://doi.org/10.1016/j.tibtech.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  5. Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177(4):437–447. https://doi.org/10.1046/j.1365-201X.2003.01093.x

    Article  CAS  PubMed  Google Scholar 

  6. Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18(1):33–37

    Article  CAS  Google Scholar 

  7. Garcia PA, Ge ZF, Moran JL, Buie CR (2016) Microfluidic screening of electric fields for electroporation. Sci Rep 6:11. https://doi.org/10.1038/srep21238

    Article  CAS  Google Scholar 

  8. Movahed S, Li DQ (2011) Microfluidics cell electroporation. Microfluid Nanofluid 10(4):703–734. https://doi.org/10.1007/s10404-010-0716-y

    Article  CAS  Google Scholar 

  9. Lee WG, Demirci U, Khademhosseini A (2009) Microscale electroporation: challenges and perspectives for clinical applications. Integr Biol 1(3):242–251. https://doi.org/10.1039/b819201d

    Article  CAS  Google Scholar 

  10. Geng T, Lu C (2013) Microfluidic electroporation for cellular analysis and delivery. Lab Chip 13(19):3803–3821. https://doi.org/10.1039/c3lc50566a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Experton J, Wilson AG, Martin CR (2016) Low-voltage flow-through electroporation in gold-microtube membranes. Anal Chem 88(24):12445–12452. https://doi.org/10.1021/acs.analchem.6b03820

    Article  CAS  PubMed  Google Scholar 

  12. Experton J, Martin CR (2018) The effect of voltage charging on the transport properties of gold nanotube membranes. Small 0(0):1703290. https://doi.org/10.1002/smll.201703290

    Article  CAS  Google Scholar 

  13. Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268(5211):700–702. https://doi.org/10.1126/science.268.5211.700

    Article  CAS  PubMed  Google Scholar 

  14. Menon VP, Martin CR (1995) Fabrication and evaluation of nanoelectrode ensembles. Anal Chem 67(13):1920–1928. https://doi.org/10.1021/ac00109a003

    Article  CAS  Google Scholar 

  15. Martin CR, Nishizawa M, Jirage K, Kang MS, Lee SB (2001) Controlling ion-transport selectivity in gold nanotubule membranes. Adv Mater 13(18):1351–1362. https://doi.org/10.1002/1521-4095(200109)13:18<1351::aid-adma1351>3.0.co;2-w

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Florida.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Experton, J., Wilson, A.G., Martin, C.R. (2020). Low-Voltage Flow-Through Electroporation Membrane and Method. In: Li, S., Chang, L., Teissie, J. (eds) Electroporation Protocols. Methods in Molecular Biology, vol 2050. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9740-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9740-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9739-8

  • Online ISBN: 978-1-4939-9740-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics