Skip to main content

Microfluidic Device for Localized Electroporation

  • Protocol
  • First Online:
Electroporation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2050))

Abstract

Electroporation is a common method of transfection due to its relatively low risk and high transfection efficiency. The most common method of electroporation is bulk electroporation which is easily performed on large quantities of cells yet results in variable levels of viability and transfection efficiency across the population. Localized electroporation is an alternative that can be administered on a similar scale but results in much more consistent with higher quality transfection and higher cell viability. This chapter discusses the creation and use of a simple and cost-effective device using porous membrane for performing localized electroporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397(8):3173–3178

    Article  CAS  Google Scholar 

  2. Silva G et al (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11(1):11–27

    Article  CAS  Google Scholar 

  3. Fei Z, Wang S, Xie Y, Henslee BE, Koh CG, Lee LJ (2007) Gene transfection of mammalian cells using membrane sandwich electroporation. Anal Chem 79(15):5719–5722

    Article  CAS  Google Scholar 

  4. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider P (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1(7):841–845

    Article  CAS  Google Scholar 

  5. Kinosita K Jr, Tsong TY (1977) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438

    Article  Google Scholar 

  6. Boukany PE et al (2011) Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat Nanotechnol 6(11):747

    Article  CAS  Google Scholar 

  7. Canatella PJ, Karr JF, Petros JA, Prausnitz MR (2001) Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophys J 80(2):755–764

    Article  CAS  Google Scholar 

  8. Cottle RN, Lee CM, Archer D, Bao G (2015) Controlled delivery of β-globin-targeting TALENs and CRISPR/Cas9 into mammalian cells for genome editing using microinjection. Sci Rep 5:16031

    Article  CAS  Google Scholar 

  9. Kang W et al (2014) Microfluidic device for stem cell differentiation and localized electroporation of postmitotic neurons. Lab Chip 14(23):4486–4495

    Article  CAS  Google Scholar 

  10. Kang W et al (2013) Nanofountain probe electroporation (NFP-E) of single cells. Nano Lett 13(6):2448–2457

    Article  CAS  Google Scholar 

  11. Yang R, Lemaître V, Huang C, Haddadi A, McNaughton R, Espinosa HD (2018) Monoclonal cell line generation and CRISPR/Cas9 manipulation via single-cell electroporation. Small 14(12):1702495

    Article  Google Scholar 

  12. Chisti Y (2001) Hydrodynamic damage to animal cells. Crit Rev Biotechnol 21(2):67–110

    Article  CAS  Google Scholar 

  13. Popovich ND, Wong S-S, Ufer S, Sakhrani V, Paine D (2003) Electron-transfer kinetics at ITO films influence of oxygen plasma. J Electrochem Soc 150(11):H255–H259

    Article  CAS  Google Scholar 

  14. Tovar O, Tung L (1991) Electroporation of cardiac cell membranes with monophasic or biphasic rectangular pulses. Pacing Clin Electrophysiol 14(11 Pt 2):1887–1892

    Article  CAS  Google Scholar 

  15. Wang M, Orwar O, Olofsson J, Weber SG (2010) Single-cell electroporation. Anal Bioanal Chem 397(8):3235–3248

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R. Yang acknowledges the funding from the Nebraska Center for Integrated Biomolecular Communication (NIH National Institutes of General Medical Sciences P20 GM113126), from Nebraska Center for Nanomedicine (P30 GM127200), from EPSCoR First Award, and from NSF award 1826135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiguo Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brooks, J., Jaberi, A., Yang, R. (2020). Microfluidic Device for Localized Electroporation. In: Li, S., Chang, L., Teissie, J. (eds) Electroporation Protocols. Methods in Molecular Biology, vol 2050. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9740-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9740-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9739-8

  • Online ISBN: 978-1-4939-9740-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics