Skip to main content

Advanced Yeast Models of Familial Alzheimer Disease Expressing FAD-Linked Presenilin to Screen Mutations and γ-Secretase Modulators

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2049))

Abstract

γ-Secretase is a multisubunit membrane protein complex containing catalytic presenilin (PS1 or PS2) and cofactors such as nicastrin, Aph-1, and Pen2. γ-Secretase hydrolyzes the transmembrane domains of type-I membrane proteins, which include the amyloid precursor protein (APP). APP is cleaved by γ-secretase to produce amyloid β peptide (Aβ), which is deposited in the brains of Alzheimer disease patients. However, the mechanism of this unusual proteolytic process within the lipid bilayer remains unknown. We have established a yeast transcriptional activator Gal4p system with artificial γ-secretase substrates containing APP or Notch fragments to examine the enzymatic properties of γ-secretase. The γ-secretase activities were evaluated by transcriptional activation of reporter genes upon Gal4 release from the membrane bound substrates as assessed by growth of yeast or β-galactosidase assay. We also established an in vitro yeast microsome assay system which identified different Aβ species produced by trimming. The yeast system allows for the screening of mutations and chemicals that inhibit or modulate γ-secretase activity. Herein we describe the genetic and biochemical methods used to analyze γ-secretase activity using the yeast reconstitution system. By studying the loss-of-function properties of PS1 mutants, it is possible to successfully screen FAD suppressor mutations and identify γ-secretase modulators (GSMs), which are promising Alzheimer disease therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Strooper B, Iwatsubo T, Wolfe MS (2012) Presenilins and γ-secretase: structure, function, and role in Alzheimer disease. Cold Spring Harb Perspect Med 2:a006304

    Article  Google Scholar 

  2. Selkoe DJ (2011) Alzheimer’s disease. Cold Spring Harb Perspect Biol 3:a004457

    Article  Google Scholar 

  3. Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T (2003) The role of presenilin cofactors in the γ-secretase complex. Nature 422:438–441

    Article  CAS  Google Scholar 

  4. Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C (2003) Reconstitution of γ-secretase activity. Nat Cell Biol 5:486–488

    Article  CAS  Google Scholar 

  5. Bai X, Yan C, Yang G, Lu P, Ma D, Sun L, Zhou R, Scheres SHW, Shi Y (2015) An atomic structure of human γ-secretase. Nature 525:212–217

    Article  CAS  Google Scholar 

  6. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398:513–517

    Article  CAS  Google Scholar 

  7. Shen J, Kelleher RJ 3rd. (2007) The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci U S A 104:403–409

    Article  CAS  Google Scholar 

  8. Wolfe MS (2007) When loss is gain: reduced presenilin proteolytic function leads to increased Aβ42/Aβ40. EMBO Rep 8:141–146

    Article  Google Scholar 

  9. Tomita T (2014) Molecular mechanism of intramembrane proteolysis by γ-secretase. J Biochem 156:195–201

    Article  CAS  Google Scholar 

  10. Sun L, Li X, Shi Y (2016) Structural biology of intramembrane proteases: mechanistic insights from rhomboid and S2P to γ-secretase. Curr Opin Struct Biol 37:97–107

    Article  CAS  Google Scholar 

  11. Bruckner A, Polge C, Lentze N, Auerbach D, Schlattner U (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10:2763–2788

    Article  CAS  Google Scholar 

  12. Futai E, Yagishita S, Ishiura S (2009) Nicastrin is dispensable for gamma-secretase protease activity in the presence of specific mutations. J Biol Chem 19:13013–13022

    Article  Google Scholar 

  13. Yagishita S, Futai E, Ishiura S (2008) In vitro reconstitution of gamma-secretase activity using yeast microsomes. Biochem Biophys Res Commun 377:141–145

    Article  CAS  Google Scholar 

  14. Yonemura Y, Futai E, Yagishita S, Suo S, Tomita T, Iwatsubo T, Ishiura S (2011) Comparison of presenilin 1 and presenilin 2 γ-secretase activities using a yeast reconstitution system. J Biol Chem 286:44569–44575

    Article  CAS  Google Scholar 

  15. Futai E, Osawa S, Cai T, Fujisawa T, Ishiura S, Tomita T (2016) Suppressor mutations for presenilin 1 familial Alzheimer disease mutants modulate γ-secretase activities. J Biol Chem 291:435–446

    Article  CAS  Google Scholar 

  16. James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for high efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    Article  CAS  Google Scholar 

  17. Miller CA 3rd, Martinat MA, Hyman LE (1998) Assessment of aryl hydrocarbon receptor complex interactions using pBEVY plasmids: expression vectors with bi-directional promoters for use in Saccharomyces cerevisiae. Nucleic Acids Res 26:3577–3583

    Article  CAS  Google Scholar 

  18. Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122

    Article  CAS  Google Scholar 

  19. Gietz RD, Woods RA (2002) Transformation of yeast by the Liac/SS carrier DNA/PEG method. Mol Enzymol 350:87–96

    Article  CAS  Google Scholar 

  20. Tomita T, Takikawa R, Koyama A, Morohashi Y, Takasugi N, Saido TC, Maruyama K, Iwatsubo T (1999) C terminus presenilin is required for overproduction of amyloidgenic Aβ42 through stabilization and endoproteolysis of presenilin. J Neurosci 19:10627–10634

    Article  CAS  Google Scholar 

  21. Clontech (2001) Yeast protocols handbook, Publication PT3024–1. Clontech, Mountain View, CA

    Google Scholar 

  22. Wuestehube LJ, Schekman RW (1992) Reconstitution of transport from endoplasmic reticulum to Golgi complex using endoplasmic reticulum-enriched membrane fraction from yeast. Methods Enzymol 219:124–136

    Article  CAS  Google Scholar 

  23. Yagishita S, Morishima-Kawashima M, Ishiura S, Ihara Y (2008) Aβ46 is processed to Aβ40 and Aβ43, but not to Aβ42, in the low density membrane domains. J Biol Chem 283:733–738

    Article  CAS  Google Scholar 

  24. Qi-Takahara Y, Morishima-Kawashima M, Tanimura Y, Dolios G, Hirotani N, Horikoshi Y, Kametani F, Maeda M, Saido TC, Wang R, Ihara Y (2005) Longer forms of amyloid beta protein: implications for the mechanism of intramembrane cleavage by gamma-secretase. J Neurosci 25:436–445

    Article  CAS  Google Scholar 

  25. Ono Y, Torii F, Ojima K, Doi N, Yoshioka K, Kawabata Y, Labeit D, Labeit S, Suzuki K, Abe K, Maeda T, Sorimachi H (2006) Suppressed disassembly of autolyzing p94/CAPN3 by N2A connectin/titin in a genetic reporter system. J Biol Chem 281:18519–18531

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Takeshi Iwatsubo and Dr. Taisuke Tomita (University of Tokyo) for PS1 antisera and Pen2 and Aph-1 clones, Dr. Raphael Kopan (Washington University) for the mNotch1 clone, and Dr. Philip James (University of Wisconsin) for the PJ-69-4A yeast strain. We thank Dr. Taisuke Tomita for helpful discussions and technical suggestions. We also thank the members of our laboratory for encouragement and critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Futai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Futai, E. (2019). Advanced Yeast Models of Familial Alzheimer Disease Expressing FAD-Linked Presenilin to Screen Mutations and γ-Secretase Modulators. In: Oliver, S.G., Castrillo, J.I. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 2049. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9736-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9736-7_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9735-0

  • Online ISBN: 978-1-4939-9736-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics