Skip to main content

Measuring the Activity of Plasma Membrane and Vacuolar Transporters in Yeast

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2049))

Abstract

The yeast proteome includes about 300 polytopic membrane proteins known or predicted to function as transporters. Such proteins ensure active or passive transport of small ions or metabolites across the plasma or internal membranes. Despite decades of research on yeast transporters, many of these remain uncharacterized in terms of substrate selectivity range, subcellular localization, and biological function. Assaying the uptake of radiolabeled compounds into whole cells or isolated organelles remains a powerful method for characterizing the function and biochemical properties of these proteins. Here we describe established protocols for measuring transporter activity in whole cells, intact vacuoles, or reconstituted vacuolar vesicles. These methods have proved particularly useful in the context of our work on yeast amino acid transporters, and can in principle be applied to assaying the uptake of other categories of compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Grenson M, Mousset M, Wiame JM, Béchet J (1966) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochim Biophys Acta 127:325–338

    Article  CAS  Google Scholar 

  2. Grenson M (1966) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. II. Evidence for a specific lysine-transporting system. Biochim Biophys Acta 127:339–346

    Article  CAS  Google Scholar 

  3. Gits JJ, Grenson M (1967) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. 3. Evidence for a specific methionine-transporting system. Biochim Biophys Acta 135:507–516

    Article  CAS  Google Scholar 

  4. Grenson M, Hou C, Crabeel M (1970) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol 103:770–777

    Article  CAS  Google Scholar 

  5. Van Belle D, André B (2001) A genomic view of yeast membrane transporters. Curr Opin Cell Biol 13:389–398

    Article  Google Scholar 

  6. Yang Z, Huang J, Geng J, Nair U, Klionsky DJ (2006) Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 17:5094–5104

    Article  CAS  Google Scholar 

  7. Nicastro R, Sardu A, Panchaud N, De Virgilio C (2017) The architecture of the rag GTPase signaling network. Biomol Ther 7:48

    Google Scholar 

  8. Boller T, Dürr M, Wiemken A (1975) Characterization of a specific transport system for arginine in isolated yeast vacuoles. Eur J Biochem 54:81–91

    Article  CAS  Google Scholar 

  9. Ohsumi Y, Anraku Y (1981) Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J Biol Chem 256:2079–2082

    Article  CAS  Google Scholar 

  10. Boller T, Dürr M, Wiemken A (1989) Transport in isolated yeast vacuoles: characterization of arginine permease. Methods Enzymol 174:504–518

    Article  CAS  Google Scholar 

  11. Kakinuma Y, Ohsumi Y, Anraku Y (1981) Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 256:10859–10863

    Article  CAS  Google Scholar 

  12. Sato T, Ohsumi Y, Anraku Y (1984) An arginine/histidine exchange transport system in vacuolar-membrane vesicles of Saccharomyces cerevisiae. J Biol Chem 259:11509–11511

    Article  CAS  Google Scholar 

  13. Russnak R, Konczal D, McIntire SL (2001) A family of yeast proteins mediating bidirectional vacuolar amino acid transport. J Biol Chem 276:23849–23857

    Article  CAS  Google Scholar 

  14. Wiame JM, Grenson M, Arst HN (1985) Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol 26:1–88

    Article  CAS  Google Scholar 

  15. Wiemken A (1975) Isolation of vacuoles from yeasts. Methods Cell Biol 12:99–109

    Article  CAS  Google Scholar 

  16. Stevens T, Esmon B, Schekman R (1982) Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell 30:439–448

    Article  CAS  Google Scholar 

  17. Conradt B, Shaw J, Vida T, Emr S, Wickner W (1992) In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae. J Cell Biol 119:1469–1479

    Article  CAS  Google Scholar 

  18. Gerasimaite R, Sharma S, Desfougères Y, Schmidt A, Mayer A (2014) Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. J Cell Sci 127:5093–5104

    Article  Google Scholar 

  19. Serrano R (1983) In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett 156:11–14

    Article  CAS  Google Scholar 

  20. Kane PM (1995) Disassembly and reassembly of the yeast vacuolar H(+)-ATPase in vivo. J Biol Chem 270:17025–17032

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Christos Gournas, Stephan Vissers, and Kathleen Broman for critical reading of the manuscript. M.C. was the recipient of a FRIA PhD fellowship. This work was supported by a PDR grant (nr. 23655065) from the FNRS (Fédération Wallonie-Bruxelles, Belgium) and by a grant from the Cystinosis Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno André .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cools, M., Rompf, M., Mayer, A., André, B. (2019). Measuring the Activity of Plasma Membrane and Vacuolar Transporters in Yeast. In: Oliver, S.G., Castrillo, J.I. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 2049. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9736-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9736-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9735-0

  • Online ISBN: 978-1-4939-9736-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics