Skip to main content

Yeast Systems Biology: The Continuing Challenge of Eukaryotic Complexity

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2049))

Abstract

Research on yeast has produced a plethora of tools and resources that have been central to the progress of systems biology. This chapter reviews these resources, explains the innovations that have been made since the first edition of this book, and introduces the constituent chapters of the current edition. The value of these resources not only in building and testing models of the functional networks of the yeast cell, but also in providing a foundation for network studies on the molecular basis of complex human diseases is considered. The gaps in this vast compendium of data, including enzyme kinetic characteristics, biomass composition, transport processes, and cell–cell interactions are discussed, as are the interactions between yeast cells and those of other species. The relevance of these studies to both traditional and advanced biotechnologies and to human medicine is considered, and the opportunities and challenges in using unicellular yeasts to model the systems of multicellular organisms are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castrillo JI, Oliver SG (2011) Yeast systems biology: the challenge of eukaryotic complexity. Methods Mol Biol 759:3–28

    Article  CAS  PubMed  Google Scholar 

  2. Castrillo JI, Oliver SG (eds) (2019) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  3. Waddington CH (1968) Towards a theoretical biology. Nature 218:525–527

    Article  CAS  PubMed  Google Scholar 

  4. Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274:546–567

    Article  CAS  PubMed  Google Scholar 

  5. Oliver SG, van der Aart QJM, Agostoni-Carbone ML et al (1992) The complete DNA sequence of yeast chromosome III. Nature 357:38–46

    Article  CAS  PubMed  Google Scholar 

  6. Oliver SG (1996) From DNA sequence to biological function. Nature 379:597–600

    Article  CAS  PubMed  Google Scholar 

  7. Oliver S (2000) Guilt-by-association goes global. Nature 403:601–603

    Article  CAS  PubMed  Google Scholar 

  8. Snyder M, Gallagher JEG (2009) Systems biology from a yeast omics perspective. FEBS Lett 583:3895–3899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hieter P, Boguski M (1997) Functional genomics: it’s all how you read it. Science 278:601–602

    Article  CAS  PubMed  Google Scholar 

  10. Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st century biology. Genetics 189:695–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peter J, De Chiara M, Friedrich A (2018) Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556:339–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jinks-Robertson S, Klein HL (2015) Ribonucleotides in DNA: hidden in plain sight. Nat Struct Mol Biol 22:176–178

    Article  CAS  PubMed  Google Scholar 

  13. Koh KD, Balachander S, Hesselberth JR et al (2015) Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nat Methods 12:251–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Balachander S, Yang T, Newnam G et al (2019) Capture of ribonucleotides in yeast genomic DNA using ribose-seq. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in Molecular Biology. Springer, Totowa, NJ

    Google Scholar 

  15. Hesketh A (2019) RNA sequencing: best practices, experimental protocol and data analysis. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  16. Kang Y, Ooi HS, Zhao X (2019) Transcript profiling analysis through paired-end ditag (PET) approach coupled with deep sequencing revealing transcriptome complexity in yeast. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  17. Hesketh AR, Castrillo JI, Sawyer TJ et al (2013) Investigating the physiological response of Pichia (Komagataella) pastoris GS115 to the heterologous expression of misfolded proteins using chemostat cultures. Appl Microbiol Biotechnol 97:9747–9762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ledesma L, Sandoval E, Cruz-Martinez U (2018) YAAM: yeast amino acid modifications database. Database (Oxford) 1099

    Google Scholar 

  19. YAAM: yeast amino acid modifications database. http://yaam.ifc.unam.mx/index.php Accessed 4th January 2019

  20. Zacchi LF, Schulz BL (2019) Data-independent acquisition for yeast glycoproteomics. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  21. Chaleckis R, Ohashi K, Meister I et al (2019) Metabolomic analysis of yeast and human cells: latest advances and challenges. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  22. Giaever G, Chu AM, Ni L et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  PubMed  Google Scholar 

  23. Mülleder M, Capuano F, Pir P et al (2012) A prototrophic deletion mutant collection for yeast metabolomics and systems biology. Nat Biotechnol 30:1176–1178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Allen J, Davey HM, Broadhurst D et al (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21:692–696

    Article  CAS  PubMed  Google Scholar 

  25. Mülleder M, Calvani E, Alam MT et al (2016) Functional metabolomics describes the yeast biosynthetic regulome. Cell 167:553–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Schones DE, Cui K, Cuddapah S (2011) Genome-wide approaches to studying yeast chromatin modifications. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  27. Byeon B, Wang W, Barski A et al (2013) The ATP-dependent chromatin remodeling enzyme Fun30 represses transcription by sliding promoter-proximal nucleosomes. J Biol Chem 288:23182–23193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Borelov S, Reynolds N, Xenophontos M et al (2018) The nucleosome remodeling and deacetylation complex modulates chromatin structure at sites of active transcription to fine-tune gene expression. Mol Cell 71:56–72

    Article  CAS  Google Scholar 

  29. Poramba-Liyanage DW, Korthout T, van Leeuwen F (2019) Epi-ID: systematic and direct screening for chromatin regulators in yeast by Barcode-ChIP-Seq. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  30. Tollervey D (2015) RNA surveillance and the exosome. RNA 21:492–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thomas HB, O’Keefe RT (2019) Advanced methods for the analysis of altered pre-mRNA splicing in yeast and disease. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  32. Swaminathan A, Harrison PF, Preiss T et al (2019) PAT-Seq: a method for simultaneous quantitation of gene expression, poly(A)-site selection and poly(A) length-distribution in yeast transcriptomes. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  33. Alam MT, Olin-Sandoval V, Stincone A et al (2017) The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nat Commun 8:16018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Breker M, Gymrek M, Schuldiner M (2013) A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J Cell Biol 200:839–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nightingale DJH, Oliver SG, Lilley KS (2019) Mapping the Saccharomyces cerevisiae spatial proteome with high resolution using hyperLOPIT. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  36. He F, Murabito E, Westerhoff HV (2016) Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering. J R Soc Interface 13:20151046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chubukov V, Gerosa L, Kochnowski K et al (2014) Coordination of microbial metabolism. Nature Rev Microbiol 12:327–340

    Article  CAS  Google Scholar 

  38. Bouwman J, Kiewiet J, Alexander Lindenbergh A et al (2011) Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast. Yeast 28:43–53

    Article  CAS  PubMed  Google Scholar 

  39. Klipp E, Nordlander B, Kruger R et al (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23:975–982

    Article  CAS  PubMed  Google Scholar 

  40. Ralser M, Wamelink MMC, Latkolik S et al (2009) Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response. Nat Biotechnol 27:604–605

    Article  CAS  PubMed  Google Scholar 

  41. Klipp E, Liebermeister W, Wierling C et al (2016) Systems biology: a textbook, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  42. Dikicioglu D (2019) Rational design and methods of analysis for the study of short- and long-term dynamic responses of eukaryotic systems. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  43. Chen Y, Li G, Nielsen J (2019) Genome-scale metabolic modeling from yeast to human cell models of complex diseases: latest advances and challenges. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  44. Tunahan Çakır T, Kökrek E, Avşar G, Abdik E, Pir P (2019) Next-generation genome-scale models incorporating multilevel ‘omics data: from yeast to human. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  45. van der Zee L, Barberis M (2019) Advanced modeling of cellular proliferation: towards a multi-scale framework coupling cell cycle to metabolism by integrating logical and constraint-based models. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  46. Júlvez J, Dikicioglu D, Oliver SG (2018) Handling variability and incompleteness of biological data by flexible nets: a case study for Wilson disease. NPJ Syst Biol Appl 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  47. Smallbone K, Messiha HL, Carroll KM et al (2013) A model of yeast glycolysis based on a consistent kinetic characterization of all its enzymes. FEBS Lett 587:2832–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dikicioglu D, Kırdar B, Oliver SG (2015) Biomass composition: the “elephant in the room” of metabolic modelling. Metabolomics 11:1690–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carnicer M, Baumann K, Töplitz I et al (2009) Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels. Microb Cell Factories 8:65

    Article  CAS  Google Scholar 

  50. Rußmayer H, Buchetics M, Gruber C et al (2015) Systems-level organization of yeast methylotrophic lifestyle. BMC Biol 13:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Cankorur-Cetinkaya A, Dikicioglu D, Oliver SG (2017) Metabolic modeling to identify engineering targets for Komagataella phaffii: the effect of biomass composition on gene target identification. Biotechnol Bioeng 114:2605–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stanford NJ, Scharm M, Dobson PD et al (2019) Data management in computational systems biology: exploring standards, tools, databases, and packaging best practices. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  53. Adams JU (2015) Genetics: big hopes for big data. Nature 527:S108–S109

    Article  CAS  PubMed  Google Scholar 

  54. Oliver SG, Lock A, Harris MA et al (2016) Model organism databases: essential resources that need the support of both funders and users. BMC Biol 14:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rutherford KM, Harris MA, Lock A et al (2014) Canto: an online tool for community literature curation. Bioinformatics 30:1791–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. King RD, Rowland J, Oliver SG et al (2009) The automation of science. Science 324:85–89

    Article  CAS  PubMed  Google Scholar 

  57. Szappanos B, Kovács K, Szamecz B et al (2011) An integrated approach to elucidate the organization principles of genetic interaction networks in yeast metabolism. Nat Genet 43:656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lupas AN (2014) What I cannot create, I do not understand. Science 346:1455–1456

    Article  CAS  PubMed  Google Scholar 

  59. Szczebara FM, Chandelier C, Villeret C (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–148

    Article  CAS  PubMed  Google Scholar 

  60. Ro D-K, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  PubMed  Google Scholar 

  61. Galanie S, Thodey K, Trenchard IJ et al (2015) Complete biosynthesis of opioids in yeast. Science 349:1095–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. DiCarlo JE, Norville JE, Mali P et al (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nuclec Acids Res 41:4336–4343

    Article  CAS  Google Scholar 

  63. Walter JM, Schubert MG, Kung SH et al (2019) Method for multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas9. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  64. Richardson SM, Mitchell LA, Stracquadanio G et al (2017) Design of a synthetic yeast genome. Science 355:1040–1044

    Article  CAS  PubMed  Google Scholar 

  65. Shen Y, Stracquadanio G, Wang Y et al (2016) SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res 26:36–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Blount BA, Gowers G-OF, Ho JCH (2018) Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat Commun 9:1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Oliver SG (1996) A network approach to the systematic analysis of yeast gene function. Trends Genet 12:241–242

    Article  CAS  PubMed  Google Scholar 

  68. Foury F (1997) Human genetic diseases: a cross-talk between man and yeast. Gene 195:1–10

    Article  CAS  PubMed  Google Scholar 

  69. Campuzano V, Montermini L, Molto M et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  CAS  PubMed  Google Scholar 

  70. Zhang N, Osborn M, Gitsham P et al (2003) Using yeast to place human genes in functional categories. Gene 303:121–129

    Article  CAS  PubMed  Google Scholar 

  71. Hamza A, Tammpere E, Kofoed M et al (2015) Complementation of yeast genes with human genes as an experimental platform for functional testing of human genetic variants. Genetics 201:1263–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Futai E (2019) Advanced yeast models of familial Alzheimer disease expressing FAD-linked presenilin to screen mutations and γ-secretase modulators. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  73. Piotrowski JS, Daniel F, Tardiff DF (2019) From yeast-to-humans: leveraging new approaches in yeast to accelerate discovery of therapeutic targets for synucleinopathies. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  74. Hartwell LH, Szankasi P, Roberts CJ et al (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science 278:1064–1068

    Article  CAS  PubMed  Google Scholar 

  75. Matuo R, Sousa FG, Soares DG et al (2012) Saccharomyces cerevisiae as a model system to study the response to anticancer agents. Cancer Chemother Pharmacol 70:491–502

    Article  CAS  PubMed  Google Scholar 

  76. Cal M, Matyjaszczyk I, Ułaszewski S (2019) Yeast genome screening and methods for the discovery of metabolism pathways involved in a phenotypic response to anti-cancer agents. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  77. Bilsland E, Sparkes A, Williams K et al (2013) Yeast-based automated high-throughput screens to identify anti-parasitic lead compounds. Open Biol 3:120158

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bilsland E, Bean DM, Devaney E et al (2016) Yeast-based high-throughput screens to identify novel compounds active against Brugia malayi. PLoS Negl Trop Dis 10:e000401

    Article  CAS  Google Scholar 

  79. Yu H, Braun P, Yıldırım MA et al (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322:104–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Costanzo M, Baryshnikova A, Bellay J et al (2010) The genetic landscape of a cell. Science 327:425–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grys BT, Lo DS, Sahin N et al (2016) Machine learning and computer vision approaches for phenotypic profiling. J Cell Biol 216:65–71

    Article  PubMed  CAS  Google Scholar 

  82. Kuzmin E, Van der Sluis B, Wang W et al (2018) Systematic analysis of complex genetic interactions. Science 360:eaao1729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ciryam P, Lambert-Smith I, Bean D et al (2017) Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS. Proc Natl Acad Sci U S A 114:E3935–E3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cools M, Rompf M, Mayer A, André B (2019) Measuring the activity of plasma membrane and vacuolar transporters in yeast. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  85. Piccirillo S, Morales R, White MG et al (2015) Cell differentiation and spatial organization in yeast colonies: role of cell-wall integrity pathway. Genetics 201:1427–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Campbell K, Correia-Melo C, Ralser M (2019) Self-establishing communities, a yeast model to study the physiological impact of metabolic cooperation in eukaryotic cells. In: Castrillo JI, Oliver SG (eds) Yeast systems biology, Methods in molecular biology. Springer, Totowa, NJ

    Google Scholar 

  87. Palková Z, Janderová B, Gabriel J et al (1997) Ammonia mediates communication between yeast colonies. Nature 390:532–536

    Article  PubMed  Google Scholar 

  88. Biggs MB, Medlock GL, Glynis L et al (2015) Metabolic network modeling of microbial communities. WIREs Syst Biol Med 7:317–334

    Article  Google Scholar 

  89. Fleet GH, Lafon-Lafourcade S, Rebéreau-Gayon P (1984) Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Appl Environ Microbiol 48:1034–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dantas A dS, Lee KK, Raziunaite I et al (2016) Cell biology of Candida albicans-host interactions. Curr Opin Microbiol 34:111–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work on yeast systems biology in my laboratory has been supported by the Biotechnology & Biological Sciences Research Council (UK), the European Commission, and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Oliver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oliver, S.G. (2019). Yeast Systems Biology: The Continuing Challenge of Eukaryotic Complexity. In: Oliver, S.G., Castrillo, J.I. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 2049. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9736-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9736-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9735-0

  • Online ISBN: 978-1-4939-9736-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics