Skip to main content

Live Cell Imaging of Neural Stem Cells in the Drosophila Larval Brain

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2047))

Abstract

Live cell imaging gives valuable insights into the dynamic biological processes within and between cells. An important aspect of live cell imaging is to keep the cells under best physiological condition and to prevent abnormal cellular behavior, which might be caused by phototoxicity during microscopy. In this chapter we describe a protocol to visualize division patterns of neural stem cells in live whole mount brains of Drosophila larvae. We also present a newly developed live cell chamber that allows us to control the environmental air during live cell imaging. The protocol can be adapted to look at a wide range of cellular and tissue behavior in the Drosophila model system.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Doe CQ (2008) Neural stem cells: balancing self-renewal with differentiation. Development 135:1575–1587

    Article  CAS  Google Scholar 

  2. Apitz H, Salecker I (2014) A challenge of numbers and diversity: neurogenesis in the Drosophila optic lobe. J Neurogenet 28:233–249. https://doi.org/10.3109/01677063.2014.922558

    Article  CAS  PubMed  Google Scholar 

  3. Egger B et al (2007) Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Develop 2:1

    Article  Google Scholar 

  4. Yasugi T et al (2008) Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development 135:1471–1480

    Article  CAS  Google Scholar 

  5. Cabernard C, Doe CQ (2013) Live imaging of neuroblast lineages within intact larval brains in Drosophila. Cold Spring Harb Protoc 2013:970–977. https://doi.org/10.1101/pdb.prot078162

    Article  PubMed  Google Scholar 

  6. Tsao CK et al (2017) Long-term live imaging of Drosophila eye. Disc J Vis Exp. https://doi.org/10.3791/55748

  7. Kiehart DP et al (1994) High-resolution microscopic methods for the analysis of cellular movements in Drosophila embryos. Methods Cell Biol 44:507–532

    Article  CAS  Google Scholar 

  8. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  9. Britton JS, Edgar BA (1998) Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 125:2149–2158

    CAS  PubMed  Google Scholar 

  10. Chell JM, Brand AH (2010) Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143:1161–1173. https://doi.org/10.1016/j.cell.2010.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sousa-Nunes R et al (2011) Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471:508–512. https://doi.org/10.1038/nature09867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knight MM et al (2003) Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death. Am J Physiol Cell Physiol 284:C1083–C1089. https://doi.org/10.1152/ajpcell.00276.2002

    Article  CAS  PubMed  Google Scholar 

  13. Luo L et al (1994) Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 8:1787–1802

    Article  CAS  Google Scholar 

  14. Langevin J et al (2005) Lethal giant larvae controls the localization of notch-signaling regulators numb, neuralized, and Sanpodo in Drosophila sensory-organ precursor cells. Current Biol 15:955–962. https://doi.org/10.1016/j.cub.2005.04.054

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jean-Daniel Niederhäuser for the construction of the live cell chamber and we thank Clemens Cabernard for advising us on live cell imaging protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Egger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miszczak, K., Egger, B. (2020). Live Cell Imaging of Neural Stem Cells in the Drosophila Larval Brain. In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 2047. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9732-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9732-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9731-2

  • Online ISBN: 978-1-4939-9732-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics