Skip to main content

Generating Transgenic Reporter Lines for Studying Nervous System Development in the Cnidarian Nematostella vectensis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2047))

Abstract

Neurons often display complex morphologies with long and fine processes that can be difficult to visualize, in particular in living animals. Transgenic reporter lines in which fluorescent proteins are expressed in defined populations of neurons are important tools that can overcome these difficulties. By using membrane-attached fluorescent proteins, such reporter transgenes can identify the complete outline of subsets of neurons or they can highlight the subcellular localization of fusion proteins, for example at pre- or postsynaptic sites. The relative stability of fluorescent proteins furthermore allows the tracing of the progeny of cells over time and can therefore provide information about potential roles of the gene whose regulatory elements are controlling the expression of the fluorescent protein. Here we describe the generation of transgenic reporter lines in the sea anemone Nematostella vectensis, a cnidarian model organism for studying the evolution of developmental processes. We also provide an overview of existing transgenic Nematostella lines that have been used to study conserved and derived aspects of nervous system development.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Telford MJ, Budd GE, Philippe H (2015) Phylogenomic Insights into Animal Evolution. Curr Biol 25(19):R876–R887

    Article  CAS  Google Scholar 

  2. Galliot B, Quiquand M (2011) A two-step process in the emergence of neurogenesis. Eur J Neurosci 34(6):847–862

    Article  Google Scholar 

  3. Watanabe H, Fujisawa T, Holstein TW (2009) Cnidarians and the evolutionary origin of the nervous system. Dev Growth Differ 51(3):167–183

    Article  CAS  Google Scholar 

  4. Rentzsch F, Layden M, Manuel M (2017) The cellular and molecular basis of cnidarian neurogenesis. Wiley Interdiscip Rev Dev Biol 6(1)

    Article  Google Scholar 

  5. Kelava I, Rentzsch F, Technau U (2015) Evolution of eumetazoan nervous systems: insights from cnidarians. Philos Trans R Soc Lond B Biol Sci 370(1684):20150065

    Article  Google Scholar 

  6. Zapata F, Goetz FE, Smith SA, Howison M, Siebert S, Church SH, Sanders SM, Ames CL, McFadden CS, France SC, Daly M, Collins AG, Haddock SH, Dunn CW, Cartwright P (2015) Phylogenomic Analyses Support Traditional Relationships within Cnidaria. PLoS One 10(10):e0139068

    Article  Google Scholar 

  7. Katsuki T, Greenspan RJ (2013) Jellyfish nervous systems. Curr Biol 23(14):R592–R594

    Article  CAS  Google Scholar 

  8. Mackie GO (2004) Central neural circuitry in the jellyfish Aglantha: a model simple nervous system. Neurosignals 13(1-2):5–19

    Article  CAS  Google Scholar 

  9. Garm A, Ekstrom P, Boudes M, Nilsson DE (2006) Rhopalia are integrated parts of the central nervous system in box jellyfish. Cell Tissue Res 325(2):333–343

    Article  CAS  Google Scholar 

  10. Petie R, Garm A, Nilsson DE (2011) Visual control of steering in the box jellyfish Tripedalia cystophora. J Exp Biol 214(Pt 17):2809–2815

    Article  Google Scholar 

  11. Sebe-Pedros A, Saudemont B, Chomsky E, Plessier F, Mailhe MP, Renno J, Loe-Mie Y, Lifshitz A, Mukamel Z, Schmutz S, Novault S, Steinmetz PRH, Spitz F, Tanay A, Marlow H (2018) Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-seq. Cell 173(6):1520–1534 e20

    Article  CAS  Google Scholar 

  12. Bosch TC, Anton-Erxleben F, Hemmrich G, Khalturin K (2010) The Hydra polyp: nothing but an active stem cell community. Dev Growth Differ 52(1):15–25

    Article  CAS  Google Scholar 

  13. Watanabe H, Hoang VT, Mattner R, Holstein TW (2009) Immortality and the base of multicellular life: Lessons from cnidarian stem cells. Semin Cell Dev Biol 20(9):1114–1125

    Article  CAS  Google Scholar 

  14. Frank U, Plickert G, Muller WA (2009) Cnidarian interstitial cells: The dawn of stem cell research. In: Rinkevich B, Matranga V (eds) Stem cells in marine organisms. Springer, New York, pp 33–59

    Chapter  Google Scholar 

  15. Martin VJ (1990) Development of Nerve-Cells in Hydrozoan Planulae. 3. Some Interstitial-Cells Traverse the Ganglionic Pathway in the Endoderm. Biol Bull 178(1):10–20

    Article  CAS  Google Scholar 

  16. Martin VJ, Archer WE (1986) Migration of interstitial cells and their derivatives in a hydrozoan planula. Dev Biol 116:486–496

    Article  Google Scholar 

  17. Martin VJ, Littlefield CL, Archer WE, Bode HR (1997) Embryogenesis in hydra. Biol Bull 192(3):345–363

    Article  CAS  Google Scholar 

  18. Nakanishi N, Renfer E, Technau U, Rentzsch F (2012) Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development 139(2):347–357

    Article  CAS  Google Scholar 

  19. Richards GS, Rentzsch F (2014) Transgenic analysis of a SoxB gene reveals neural progenitor cells in the cnidarian Nematostella vectensis. Development 141(24):4681–4689

    Article  CAS  Google Scholar 

  20. Grens A, Mason E, Marsh JL, Bode HR (1995) Evolutionary conservation of a cell fate specification gene: the Hydra achaete-scute homolog has proneural activity in Drosophila. Development 121(12):4027–4035

    CAS  PubMed  Google Scholar 

  21. Richards GS, Rentzsch F (2015) Regulation of Nematostella neural progenitors by SoxB, Notch and bHLH genes. Development 142(19):3332–3342

    Article  CAS  Google Scholar 

  22. Watanabe H, Kuhn A, Fushiki M, Agata K, Ozbek S, Fujisawa T, Holstein TW (2014) Sequential actions of beta-catenin and Bmp pattern the oral nerve net in Nematostella vectensis. Nat Commun 5:5536

    Article  CAS  Google Scholar 

  23. Layden MJ, Boekhout M, Martindale MQ (2012) Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway. Development 139(5):1013–1022

    Article  CAS  Google Scholar 

  24. Gahan JM, Schnitzler CE, DuBuc TQ, Doonan LB, Kanska J, Gornik SG, Barreira S, Thompson K, Schiffer P, Baxevanis AD, Frank U (2017) Functional studies on the role of Notch signaling in Hydractinia development. Dev Biol 428(1):224–231

    Article  CAS  Google Scholar 

  25. Renfer E, Amon-Hassenzahl A, Steinmetz PR, Technau U (2009) A muscle-specific transgenic reporter line of the sea anemone, Nematostella vectensis. Proc Natl Acad Sci U S A 107(1):104–108

    Article  Google Scholar 

  26. Renfer E, Technau U (2017) Meganuclease-assisted generation of stable transgenics in the sea anemone Nematostella vectensis. Nat Protoc 12(9):1844–1854

    Article  CAS  Google Scholar 

  27. Wittlieb J, Khalturin K, Lohmann JU, Anton-Erxleben F, Bosch TC (2006) Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci U S A 103(16):6208–6211

    Article  CAS  Google Scholar 

  28. Dupre C, Yuste R (2017) Non-overlapping Neural Networks in Hydra vulgaris. Curr Biol 27(8):1085–1097

    Article  CAS  Google Scholar 

  29. Kunzel T, Heiermann R, Frank U, Muller W, Tilmann W, Bause M, Nonn A, Helling M, Schwarz RS, Plickert G (2010) Migration and differentiation potential of stem cells in the cnidarian Hydractinia analysed in eGFP-transgenic animals and chimeras. Dev Biol 348(1):120–129

    Article  Google Scholar 

  30. Havrilak JA, Faltine-Gonzalez D, Wen Y, Fodera D, Simpson AC, Magie CR, Layden MJ (2017) Characterization of NvLWamide-like neurons reveals stereotypy in Nematostella nerve net development. Dev Biol 431(2):336–346

    Article  CAS  Google Scholar 

  31. Busengdal H, Rentzsch F (2017) Unipotent progenitors contribute to the generation of sensory cell types in the nervous system of the cnidarian Nematostella vectensis. Dev Biol 431(1):59–68

    Article  CAS  Google Scholar 

  32. Columbus-Shenkar YY, Sachkova MY, Macrander J, Fridrich A, Modepalli V, Reitzel AM, Sunagar K, Moran Y (2018) Dynamics of venom composition across a complex life cycle. Elife 7:e35014

    Article  Google Scholar 

  33. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  Google Scholar 

  34. Layden MJ, Rottinger E, Wolenski FS, Gilmore TD, Martindale MQ (2013) Microinjection of mRNA or morpholinos for reverse genetic analysis in the starlet sea anemone, Nematostella vectensis. Nat Protoc 8(5):924–934

    Article  Google Scholar 

  35. Schwaiger M, Schonauer A, Rendeiro AF, Pribitzer C, Schauer A, Gilles AF, Schinko JB, Renfer E, Fredman D, Technau U (2014) Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res 24(4):639–650

    Article  CAS  Google Scholar 

  36. Fritzenwanker JH, Technau U (2002) Induction of gametogenesis in the basal cnidarian Nematostella vectensis(Anthozoa). Dev Genes Evol 212(2):99–103

    Article  Google Scholar 

  37. Genikhovich G, Technau U (2009) Induction of spawning in the starlet sea anemone Nematostella vectensis, in vitro fertilization of gametes, and dejellying of zygotes. Cold Spring Harb Protoc 2009(9):pdb prot5281

    PubMed  Google Scholar 

  38. Stefanik DJ, Friedman LE, Finnerty JR (2013) Collecting, rearing, spawning and inducing regeneration of the starlet sea anemone, Nematostella vectensis. Nat Protoc 8(5):916–923

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by funding from the University of Bergen and the Research Council of Norway (to F.R.) and by the Austrian Science Fund (FWF) (P27353) to U.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Rentzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rentzsch, F., Renfer, E., Technau, U. (2020). Generating Transgenic Reporter Lines for Studying Nervous System Development in the Cnidarian Nematostella vectensis. In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 2047. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9732-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9732-9_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9731-2

  • Online ISBN: 978-1-4939-9732-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics