Skip to main content

Transplantation of Neural Tissue: Quail–Chick Chimeras

  • Protocol
  • First Online:
Brain Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2047))

Abstract

Tissue transplantation is an important approach in developmental neurobiology to determine cell fate, to uncover inductive interactions required for tissue specification and patterning as well as to establish tissue competence and commitment. Combined with state-of-the-art molecular approaches, transplantation assays have been instrumental for the discovery of gene regulatory networks controlling cell fate choices and how such networks change over time. Avian species are among the favorite model systems for these approaches because of their accessibility and relatively large size. Here we describe two culture techniques used to generate quail–chick chimeras at different embryonic stages and methods to distinguish graft and donor tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stern CD (2005) Neural induction: Old problem, new findings, yet more questions. Development 132:2007–2021

    Article  CAS  Google Scholar 

  2. Waddington CH (1934) Experiments on embryonic induction. Part I: the competence of the extra-embryonic ectoderm. Part II: experiments on coagulated organisers in the chick. Part III: a note on inductions by chick primitive streak transplanted to the rabbit embryo. J Exp Biol 11:211–227

    Google Scholar 

  3. Spemann H, Mangold H (1924) Über induktion von embryonalanlagen durch implantation artfremder organisatoren. Arch Mikroskop Anat Entwicklungsmech 100:599–638

    Article  Google Scholar 

  4. Cobos I, Shimamura K, Rubenstein JL, Martinez S, Puelles L (2001) Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras. Dev Biol 239:46–67

    Article  CAS  Google Scholar 

  5. Fernandez-Garre P, Rodriguez-Gallardo L, Gallego-Diaz V, Alvarez IS, Puelles L (2002) Fate map of the chicken neural plate at stage 4. Development 129:2807–2822

    CAS  PubMed  Google Scholar 

  6. Garcia-Martinez V, Alvarez IS, Schoenwolf GC (1993) Locations of the ectodermal and nonectodermal subdivisions of the epiblast at stages 3 and 4 of avian gastrulation and neurulation. J Exp Zool 267:431–446

    Article  CAS  Google Scholar 

  7. Eagleson GW, Harris WA (1990) Mapping of the presumptive brain regions in the neural plate of xenopus laevis. J Neurobiol 21:427–440

    Article  CAS  Google Scholar 

  8. Vieira C, Pombero A, Garcia-Lopez R, Gimeno L, Echevarria D, Martinez S (2010) Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers. Int J Dev Biol 54:7–20

    Article  CAS  Google Scholar 

  9. Couly G, Le Douarin NM (1988) The fate map of the cephalic neural primordium at the presomitic to the 3-somite stage in the avian embryo. Development 103:101–113

    PubMed  Google Scholar 

  10. Couly G, Le Douarin NM (1990) Head morphogenesis in embryonic avian chimeras: evidence for a segmental pattern in the ectoderm corresponding to the neuromeres. Development 108:543–558

    CAS  PubMed  Google Scholar 

  11. Couly GF, Le Douarin NM (1985) Mapping of the early neural primordium in quail-chick chimeras. I Developmental relationships between placodes, facial ectoderm, and prosencephalon. Dev Biol 110:422–439

    Article  CAS  Google Scholar 

  12. Couly GF, Le Douarin NM (1987) Mapping of the early neural primordium in quail-chick chimeras. II The prosencephalic neural plate and neural folds: Implications for the genesis of cephalic human congenital abnormalities. Dev Biol 120:198–214

    Article  CAS  Google Scholar 

  13. Martinez S, Wassef M, Alvarado-Mallart RM (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6:971–981

    Article  CAS  Google Scholar 

  14. Baker CV, Stark MR, Marcelle C, Bronner-Fraser M (1999) Competence, specification and induction of pax-3 in the trigeminal placode. Development 126:147–156

    CAS  PubMed  Google Scholar 

  15. Bhattacharyya S, Bronner-Fraser M (2008) Competence, specification and commitment to an olfactory placode fate. Development 135:4165–4177

    Article  CAS  Google Scholar 

  16. Groves AK, Bronner-Fraser M (2000) Competence, specification and commitment in otic placode induction. Development 127:3489–3499

    CAS  PubMed  Google Scholar 

  17. Anderson C, Khan MA, Wong F, Solovieva T, Oliveira NM, Baldock RA, Tickle C, Burt DW, Stern CD (2016) A strategy to discover new organizers identifies a putative heart organizer. Nat Commun 7:12656

    Article  CAS  Google Scholar 

  18. Trevers KE, Prajapati RS, Hintze M, Stower MJ, Strobl AC, Tambalo M, Ranganathan R, Moncaut N, Khan MAF, Stern CD, Streit A (2017) Neural induction by the node and placode induction by head mesoderm share an initial state resembling neural plate border and es cells. Proc Natl Acad Sci U S A 115:355–360

    Article  Google Scholar 

  19. Hintze M, Prajapati RS, Tambalo M, Christophorou NAD, Anwar M, Grocott T, Streit A (2017) Cell interactions, signals and transcriptional hierarchy governing placode progenitor induction. Development 144:2810–2823

    Article  Google Scholar 

  20. Guthrie S, Prince V, Lumsden A (1993) Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts. Development 118:527–538

    CAS  PubMed  Google Scholar 

  21. Fekete DM, Cepko CL (1993) Retroviral infection coupled with tissue transplantation limits gene transfer in the chicken embryo. Proc Natl Acad Sci U S A 90:2350–2354

    Article  CAS  Google Scholar 

  22. Barraud P, Seferiadis AA, Tyson LD, Zwart MF, Szabo-Rogers HL, Ruhrberg C, Liu KJ, Baker CV (2010) Neural crest origin of olfactory ensheathing glia. Proc Natl Acad Sci U S A 107:21040–21045

    Article  CAS  Google Scholar 

  23. Sabado V, Barraud P, Baker CV, Streit A (2012) Specification of gnrh-1 neurons by antagonistic fgf and retinoic acid signaling. Dev Biol 362:254–262

    Article  CAS  Google Scholar 

  24. Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer nachweis einer nukleinsaeure vom typus der thymonukleinsaeure und die daruf beruhende elecktive faerbung von zellkernen in miroskopischen praeparaten. Hoppe Seylers Z Physiol Chem 135:203–248

    Article  CAS  Google Scholar 

  25. Teillet MA, Ziller C, Le Douarin NM (2008) Quail-chick chimeras. Methods Mol Biol 461:337–350

    Article  CAS  Google Scholar 

  26. Tanaka H (1990) Selective motoneuron outgrowth from the cord in the avian embryo. Neurosci Res Suppl 13:S147–S151

    Article  CAS  Google Scholar 

  27. Streit A, Stern CD (2001) Combined whole-mount in situ hybridization and immunohistochemistry in avian embryos. Methods 23:339–344

    Article  CAS  Google Scholar 

  28. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morph 88:49–92

    Article  CAS  Google Scholar 

  29. Stern CD, Ireland GW (1981) An integrated experimental study of endoderm formation in avian embryos. Anat Embryol (Berl) 163:245–263

    Article  CAS  Google Scholar 

  30. New DAT (1955) A new technique for the cultivation of the chick embryo in vitro. J Embryol Exp Morph 3:326–331

    Google Scholar 

  31. Lassiter RN, Dude CM, Reynolds SB, Winters NI, Baker CV, Stark MR (2007) Canonical wnt signaling is required for ophthalmic trigeminal placode cell fate determination and maintenance. Dev Biol 308:392–406

    Article  CAS  Google Scholar 

  32. Storey KG, Selleck MA, Stern CD (1995) Neural induction and regionalisation by different subpopulations of cells in hensen’s node. Development 121:417–428

    CAS  PubMed  Google Scholar 

  33. Le Douarin N, Dieterlen-Lievre F, Creuzet S, Teillet MA (2008) Quail-chick transplantations. Methods Cell Biol 87:19–58

    Article  Google Scholar 

  34. Izpisua-Belmonte JC, De Robertis EM, Storey KG, Stern CD (1993) The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74:645–659

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the BBSRC, NIH, and ERC. We thank Anneliese Norris for assistance with New culture photography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Streit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Streit, A., Stern, C.D. (2020). Transplantation of Neural Tissue: Quail–Chick Chimeras. In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 2047. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9732-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9732-9_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9731-2

  • Online ISBN: 978-1-4939-9732-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics