Skip to main content

Combining BrdU-Labeling to Detection of Neuronal Markers to Monitor Adult Neurogenesis in Hydra

  • Protocol
  • First Online:
Brain Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2047))

Abstract

The nervous system is produced and maintained in adult Hydra through the continuous production of nerve cells and mechanosensory cells (nematocytes or cnidocytes). De novo neurogenesis occurs slowly in intact animals that replace their dying nerve cells, at a faster rate in animals regenerating their head as a complete apical nervous system is built in few days. To dissect the molecular mechanisms that underlie these properties, a precise monitoring of the markers of neurogenesis and nematogenesis is required. Here we describe the conditions for an efficient BrdU-labeling coupled to an immunodetection of neuronal markers, either regulators of neurogenesis, here the homeoprotein prdl-a, or neuropeptides such as RFamide or Hym-355. This method can be performed on whole-mount animals as well as on macerated tissues when cells retain their morphology. Moreover, when antibodies are not available, BrdU-labeling can be combined with the analysis of gene expression by whole-mount in situ hybridization. This co-immunodetection procedure is well adapted to visualize and quantify the dynamics of de novo neurogenesis. Upon continuous BrdU labeling, the repeated measurements of BrdU-labeling indexes in specific cellular populations provide a precise monitoring of nematogenesis as well as neurogenesis, in homeostatic or developmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koizumi O (2016) Origin and evolution of the nervous system considered from the diffuse nervous system of cnidarians. In: Goffredo S, Dubinsky Z (eds) The cnidaria, past, present and future. Springer International Publishing, Cham, pp 73–91

    Chapter  Google Scholar 

  2. Galliot B, Quiquand M, Ghila L, de Rosa R, Miljkovic-Licina M, Chera S (2009) Origins of neurogenesis, a cnidarian view. Dev Biol 332:2–24

    Article  CAS  Google Scholar 

  3. Takahashi T, Koizumi O, Ariura Y, Romanovitch A, Bosch TC, Kobayakawa Y, Mohri S, Bode HR, Yum S, Hatta M et al (2000) A novel neuropeptide, Hym-355, positively regulates neuron differentiation in Hydra. Development 127:997–1005

    CAS  PubMed  Google Scholar 

  4. Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou JC, Galliot B (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17:279–289

    Article  CAS  Google Scholar 

  5. Richards GS, Simionato E, Perron M, Adamska M, Vervoort M, Degnan BM (2008) Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr Biol 18:1156–1161

    Article  CAS  Google Scholar 

  6. Teragawa CK, Bode HR (1995) Migrating interstitial cells differentiate into neurons in hydra. Dev Biol 171:286–293

    Article  CAS  Google Scholar 

  7. Fujisawa T, Nishimiya C, Sugiyama T (1986) Nematocyte differentiation in hydra. Curr Top Dev Biol 20:281–290

    Article  CAS  Google Scholar 

  8. Tardent P (1995) The cnidarian cnidocyte, a high-tech cellular weaponry. BioEssays 17:351–362

    Article  Google Scholar 

  9. Galliot B, Quiquand M (2011) A two-step process in the emergence of neurogenesis. Eur J Neurosci 34:847–862

    Article  Google Scholar 

  10. Bode HR (1992) Continuous conversion of neuron phenotype in hydra. Trends Genet 8:279–284

    Article  CAS  Google Scholar 

  11. Koizumi O (2007) Nerve ring of the hypostome in hydra: is it an origin of the central nervous system of bilaterian animals? Brain Behav Evol 69:151–159

    Article  Google Scholar 

  12. Grimmelikhuijzen CJP, Westfall JA (1995) The nervous systems of Cnidarians. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhaüser Verlag, Basel, pp 7–24

    Chapter  Google Scholar 

  13. Grunder S, Assmann M (2015) Peptide-gated ion channels and the simple nervous system of Hydra. J Exp Biol 218:551–561

    Article  Google Scholar 

  14. Anderson PA, Spencer AN (1989) The importance of cnidarian synapses for neurobiology. J Neurobiol 20:435–457

    Article  CAS  Google Scholar 

  15. Kass-Simon G, Pierobon P (2007) Cnidarian chemical neurotransmission, an updated overview. Comp Biochem Physiol A Mol Integr Physiol 146:9–25

    Article  CAS  Google Scholar 

  16. Steinmetz PRH, Kraus JEM, Larroux C, Hammel JU, Amon-Hassenzahl A, Houliston E, Wörheide G, Nickel M, Degnan BM, Technau U (2012) Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487:231–234

    Article  CAS  Google Scholar 

  17. Grens A, Mason E, Marsh JL, Bode HR (1995) Evolutionary conservation of a cell fate specification gene: the Hydra achaete-scute homolog has proneural activity in Drosophila. Development 121:4027–4035

    CAS  PubMed  Google Scholar 

  18. Gauchat D, Kreger S, Holstein T, Galliot B (1998) prdl-a, a gene marker for hydra apical differentiation related to triploblastic paired-like head-specific genes. Development 125:1637–1645

    CAS  PubMed  Google Scholar 

  19. Gauchat D, Escriva H, Miljkovic-Licina M, Chera S, Langlois MC, Begue A, Laudet V, Galliot B (2004) The orphan COUP-TF nuclear receptors are markers for neurogenesis from cnidarians to vertebrates. Dev Biol 275:104–123

    Article  CAS  Google Scholar 

  20. Miljkovic-Licina M, Gauchat D, Galliot B (2004) Neuronal evolution: analysis of regulatory genes in a first-evolved nervous system, the hydra nervous system. Biosystems 76:75–87

    Article  CAS  Google Scholar 

  21. Miljkovic-Licina M, Chera S, Ghila L, Galliot B (2007) Head regeneration in wild-type hydra requires de novo neurogenesis. Development 134:1191–1201

    Article  CAS  Google Scholar 

  22. Wenger Y, Buzgariu W, Galliot B (2016) Loss of neurogenesis in Hydra leads to compensatory regulation of neurogenic and neurotransmission genes in epithelial cells. Philos Trans R Soc Lond Ser B Biol Sci 371:20150040

    Article  CAS  Google Scholar 

  23. Wenger Y, Buzgariu W, Perruchoud C, Loichot G, Galliot B (2019) Generic and context-dependent gene modulations during Hydra whole body regeneration. BioRXiv 587147. https://doi.org/10.1101/587147

  24. Darmer D, Hauser F, Nothacker HP, Bosch TC, Williamson M, Grimmelikhuijzen CJ (1998) Three different prohormones yield a variety of Hydra-RFamide (Arg-Phe- NH2) neuropeptides in Hydra magnipapillata. Biochem J 332:403–412

    Article  CAS  Google Scholar 

  25. Hansen GN, Williamson M, Grimmelikhuijzen CJ (2000) Two-color double-labeling in situ hybridization of whole-mount Hydra using RNA probes for five different Hydra neuropeptide preprohormones: evidence for colocalization. Cell Tissue Res 301:245–253

    Article  CAS  Google Scholar 

  26. Hansen GN, Williamson M, Grimmelikhuijzen CJ (2002) A new case of neuropeptide coexpression (RGamide and LWamides) in Hydra, found by whole-mount, two-color double-labeling in situ hybridization. Cell Tissue Res 308:157–165

    Article  CAS  Google Scholar 

  27. Hwang JS, Ohyanagi H, Hayakawa S, Osato N, Nishimiya-Fujisawa C, Ikeo K, David CN, Fujisawa T, Gojobori T (2007) The evolutionary emergence of cell type-specific genes inferred from the gene expression analysis of Hydra. Proc Natl Acad Sci U S A 104:14735–14740

    Article  CAS  Google Scholar 

  28. Hayakawa E, Fujisawa C, Fujisawa T (2004) Involvement of Hydra achaete-scute gene CnASH in the differentiation pathway of sensory neurons in the tentacles. Dev Genes Evol 214:486–492

    CAS  PubMed  Google Scholar 

  29. Chera S, Kaloulis K, Galliot B (2007) The cAMP response element binding protein (CREB) as an integrative HUB selector in metazoans: clues from the hydra model system. Biosystems 87:191–203

    Article  CAS  Google Scholar 

  30. Lindgens D, Holstein TW, Technau U (2004) Hyzic, the Hydra homolog of the zic/odd-paired gene, is involved in the early specification of the sensory nematocytes. Development 131:191–201

    Article  CAS  Google Scholar 

  31. Hartl M, Mitterstiller AM, Valovka T, Breuker K, Hobmayer B, Bister K (2010) Stem cell-specific activation of an ancestral myc protooncogene with conserved basic functions in the early metazoan Hydra. Proc Natl Acad Sci U S A 107:4051–4056

    Article  CAS  Google Scholar 

  32. Ambrosone A, Marchesano V, Tino A, Hobmayer B, Tortiglione C (2012) Hymyc1 downregulation promotes stem cell proliferation in Hydra vulgaris. PLoS One 7:e30660

    Article  CAS  Google Scholar 

  33. Juliano CE, Reich A, Liu N, Götzfried J, Zhong M, Uman S, Reenan RA, Wessel GM, Steele RE, Lin H (2014) PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells. Proc Natl Acad Sci U S A 111:337–342

    Article  CAS  Google Scholar 

  34. Takaku Y, Hwang JS, Wolf A, Bottger A, Shimizu H, David CN, Gojobori T (2014) Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps. Sci Rep 4:3573

    Article  Google Scholar 

  35. Engel U (2001) A switch in disulfide linkage during minicollagen assembly in Hydra nematocysts. EMBO J 20:3063–3073

    Article  CAS  Google Scholar 

  36. Engel U, Ozbek S, Streitwolf-Engel R, Petri B, Lottspeich F, Holstein TW (2002) Nowa, a novel protein with minicollagen Cys-rich domains, is involved in nematocyst formation in Hydra. J Cell Sci 115:3923–3934

    Article  CAS  Google Scholar 

  37. Koch AW, Holstein TW, Mala C, Kurz E, Engel J, David CN (1998) Spinalin, a new glycine- and histidine-rich protein in spines of Hydra nematocysts. J Cell Sci 111:1545–1554

    CAS  PubMed  Google Scholar 

  38. Adamczyk P, Meier S, Gross T, Hobmayer B, Grzesiek S, Bachinger HP, Holstein TW, Ozbek S (2008) Minicollagen-15, a novel minicollagen isolated from Hydra, forms tubule structures in nematocysts. J Mol Biol 376:1008–1020

    Article  CAS  Google Scholar 

  39. Hwang JS, Takaku Y, Momose T, Adamczyk P, Ozbek S, Ikeo K, Khalturin K, Hemmrich G, Bosch TC, Holstein TW et al (2010) Nematogalectin, a nematocyst protein with GlyXY and galectin domains, demonstrates nematocyte-specific alternative splicing in Hydra. Proc Natl Acad Sci U S A 107:18539–18544

    Article  CAS  Google Scholar 

  40. Balasubramanian PG, Beckmann A, Warnken U, Schnolzer M, Schuler A, Bornberg-Bauer E, Holstein TW, Ozbek S (2012) Proteome of Hydra nematocyst. J Biol Chem 287:9672–9681

    Article  CAS  Google Scholar 

  41. David CN (1973) A quantitative method for maceration of hydra tissue. Wilhelm Roux Arch Dev Biol 171:259–268

    Article  Google Scholar 

  42. Bode HR, Berking S, David C, Gierer A, Schaller H, Trenker E (1973) Quantitative analysis of cell types during growth and regeneration in hydra. Wilhelm Roux Arch Entw Mech Org 171:269–285

    Article  CAS  Google Scholar 

  43. Fujisawa T (1989) Role of interstitial cell migration in generating position-dependent patterns of nerve cell differentiation in Hydra. Dev Biol 133:77–82

    Article  CAS  Google Scholar 

  44. Technau U, Holstein TW (1996) Phenotypic maturation of neurons and continuous precursor migration in the formation of the peduncle nerve net in Hydra. Dev Biol 177:599–615

    Article  CAS  Google Scholar 

  45. Campbell RD (1976) Elimination by Hydra interstitial and nerve cells by means of colchicine. J Cell Sci 21:1–13

    CAS  PubMed  Google Scholar 

  46. Marcum BA, Campbell RD (1978) Development of Hydra lacking nerve and interstitial cells. J Cell Sci 29:17–33

    CAS  PubMed  Google Scholar 

  47. Marcum BA, Fujisawa T, Sugiyama T (1980) A mutant hydra strain (sf-1) containing temperature-sensitive interstitial cells. In: Tardent P, Tardent R (eds) Developmental and cellular biology of coelenterates. Elsevier, Amsterdam, pp 429–434

    Google Scholar 

  48. Takahashi T, Fujisawa T (2009) Important roles for epithelial cell peptides in hydra development. BioEssays

    Google Scholar 

  49. Takahashi T, Takeda N (2015) Insight into the molecular and functional diversity of cnidarian neuropeptides. Int J Mol Sci 16:2610–2625

    Article  CAS  Google Scholar 

  50. Plickert G, Kroiher M (1988) Proliferation kinetics and cell lineages can be studied in whole mounts and macerates by means of BrdU/anti-BrdU technique. Development 103:791–794

    CAS  PubMed  Google Scholar 

  51. Bode H, Lengfeld T, Hobmayer B, Holstein TW (2008) Detection of expression patterns in Hydra pattern formation. Methods Mol Biol 469:69–84

    Article  CAS  Google Scholar 

  52. Kaloulis K, Chera S, Hassel M, Gauchat D, Galliot B (2004) Reactivation of developmental programs: the cAMP-response element-binding protein pathway is involved in hydra head regeneration. Proc Natl Acad Sci U S A 101:2363–2368

    Article  CAS  Google Scholar 

  53. Grimmelikhuijzen CJ (1985) Antisera to the sequence Arg-Phe-amide visualize neuronal centralization in hydroid polyps. Cell Tissue Res 241:171–182

    Article  CAS  Google Scholar 

  54. Koizumi O, Bode HR (1991) Plasticity in the nervous system of adult hydra. III. Conversion of neurons to expression of a vasopressin-like immunoreactivity depends on axial location. J Neurosci 11:2011–2020

    Article  CAS  Google Scholar 

  55. Dunne JF, Javois LC, Huang LW, Bode HR (1985) A subset of cells in the nerve net of Hydra oligactis defined by a monoclonal antibody: its arrangement and development. Dev Biol 109:41–53

    Article  CAS  Google Scholar 

  56. Galliot B, Welschof M, Schuckert O, Hoffmeister S, Schaller HC (1995) The cAMP response element binding protein is involved in hydra regeneration. Development 121:1205–1216

    CAS  PubMed  Google Scholar 

  57. Chera S, Ghila L, Wenger Y, Galliot B (2011) Injury-induced activation of the MAPK/CREB pathway triggers apoptosis-induced compensatory proliferation in hydra head regeneration. Develop Growth Differ 53:186–201

    Article  CAS  Google Scholar 

  58. Ott SR (2008) Confocal microscopy in large insect brains: zinc-formaldehyde fixation improves synapsin immunostaining and preservation of morphology in whole-mounts. J Neurosci Methods 172:220–230

    Article  CAS  Google Scholar 

  59. Loomis WF (1956) Growth and sexual differentiation of hydra in mass culture. J Exp Zool 132

    Article  Google Scholar 

  60. Gierer A, Berking S, Bode H, David CN, Flick K, Hansmann G, Schaller H, Trenkner E (1972) Regeneration of hydra from reaggregated cells. Nat New Biol 239:98–101

    Article  CAS  Google Scholar 

  61. Macklin M (1976) The effect of urethan on hydra. Biol Bull 150:442–452

    Article  CAS  Google Scholar 

  62. Latt SA (1973) Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc Natl Acad Sci U S A 70:3395–3399

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation (SNF grants 31003A_149630, 31003_169930), the Claraz donation, and the Canton of Geneva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Galliot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Buzgariu, W., Curchod, ML., Perruchoud, C., Galliot, B. (2020). Combining BrdU-Labeling to Detection of Neuronal Markers to Monitor Adult Neurogenesis in Hydra. In: Sprecher, S. (eds) Brain Development. Methods in Molecular Biology, vol 2047. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9732-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9732-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9731-2

  • Online ISBN: 978-1-4939-9732-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics