Skip to main content

Detection of Extracellular ATP in the Tumor Microenvironment, Using the pmeLUC Biosensor

  • Protocol
  • First Online:
Book cover Purinergic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2041))

Abstract

ATP is one of the main components of the tumor microenvironment, where it affects cell growth, tumor progression and antitumor immune response. The development of the pmeLUC probe, a luciferase engineered to be expressed on the outer facet of the plasma membrane, allowed real-time measurement of extracellular ATP in vitro and in vivo systems, among which the tumor microenvironment. Here we describe the experimental procedures to measure extracellular ATP levels in the tumor microenvironment of three different cancer models generated by the implant of pmeLUC-expressing tumor cells into the appropriate mice strain: ACN human neuroblastoma (nude/nude mice host), WEHI-3B murine leukemia (BALB/c host), and B16F10 murine melanoma (C57Bl/6 host). The procedure to obtain stable expression of pmeLUC in different cell types and methods for the measurement of extracellular ATP with pmeLUC in vitro are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nath S, Villadsen J (2015) Oxidative phosphorylation revisited. Biotechnol Bioeng 112:429–437

    Article  CAS  Google Scholar 

  2. Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E (2018) Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer 18:601–618

    Article  Google Scholar 

  3. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  CAS  Google Scholar 

  4. Ozalp VC, Nielsen LJ, Olsen LF (2010) An aptamer-based nanobiosensor for real-time measurements of ATP dynamics. Chembiochem 11:2538–2541

    Article  Google Scholar 

  5. Llaudet E, Hatz S, Droniou M, Dale N (2005) Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal Chem 77:3267–3273

    Article  CAS  Google Scholar 

  6. Berg J, Hung YP, Yellen G (2009) A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat Methods 6:161–166

    Article  CAS  Google Scholar 

  7. Dalton CM, Szabadkai G, Carroll J (2014) Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption. J Cell Physiol 229:353–361

    Article  CAS  Google Scholar 

  8. Manfredi G, Yang L, Gajewski CD, Mattiazzi M (2002) Measurements of ATP in mammalian cells. Methods 26:317–326

    Article  CAS  Google Scholar 

  9. Lee DH, Kim SY, Hong JI (2004) A fluorescent pyrophosphate sensor with high selectivity over ATP in water. Angew Chem Int Ed Engl 43:4777–4780

    Article  CAS  Google Scholar 

  10. Morciano G, Sarti AC, Marchi S, Missiroli S, Falzoni S, Raffaghello L, Pistoia V, Giorgi C, Di Virgilio F, Pinton P (2017) Use of luciferase probes to measure ATP in living cells and animals. Nat Protoc 12:1542–1562

    Article  CAS  Google Scholar 

  11. Di Virgilio F, Pinton P, Falzoni S (2016) Assessing extracellular ATP as danger signal in vivo: the pmeLuc system. Methods Mol Biol 1417:115–129

    Article  Google Scholar 

  12. Pellegatti P, Falzoni S, Pinton P, Rizzuto R, Di Virgilio F (2005) A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. Mol Biol Cell 16:3659–3665

    Article  CAS  Google Scholar 

  13. DeLuca M, McElroy WD (1974) Kinetics of the firefly luciferase catalyzed reactions. Biochemistry 13:921–925

    Article  CAS  Google Scholar 

  14. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96:13807–13812

    Article  CAS  Google Scholar 

  15. Patergnani S, Baldassari F, De Marchi E, Karkucinska-Wieckowska A, Wieckowski MR, Pinton P (2014) Methods to monitor and compare mitochondrial and glycolytic ATP production. Methods Enzymol 542:313–332

    Article  CAS  Google Scholar 

  16. Michels AA, Nguyen VT, Konings AW, Kampinga HH, Bensaude O (1995) Thermostability of a nuclear-targeted luciferase expressed in mammalian cells. Destabilizing influence of the intranuclear microenvironment. Eur J Biochem 234:382–389

    Article  CAS  Google Scholar 

  17. Gajewski CD, Yang L, Schon EA, Manfredi G (2003) New insights into the bioenergetics of mitochondrial disorders using intracellular ATP reporters. Mol Biol Cell 14:3628–3635

    Article  CAS  Google Scholar 

  18. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 3:e2599

    Article  Google Scholar 

  19. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–1577

    Article  CAS  Google Scholar 

  20. Bianchi G, Vuerich M, Pellegatti P, Marimpietri D, Emionite L, Marigo I, Bronte V, Di Virgilio F, Pistoia V, Raffaghello L (2014) ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death Dis 5:e1135

    Article  CAS  Google Scholar 

  21. Pietrocola F, Pol J, Vacchelli E, Rao S, Enot DP, Baracco EE et al (2016) Caloric restriction Mimetics enhance anticancer immunosurveillance. Cancer Cell 30:147–160

    Article  CAS  Google Scholar 

  22. Lecciso M, Ocadlikova D, Sangaletti S, Trabanelli S, De Marchi E, Orioli E et al (2017) ATP release from chemotherapy-treated dying leukemia cells elicits an immune suppressive effect by increasing regulatory T cells and tolerogenic dendritic cells. Front Immunol 8:1918

    Article  Google Scholar 

Download references

Acknowledgments

F.D.V. is supported by grants from the Italian Association for Cancer Research (n. IG 13025 and IG 18581), the Ministry of Health of Italy (n. RF-2011-02348435), the Ministry of Education of Italy (n. 20178YTNWC). E.A. is supported by grant from the Italian Association for Cancer Research (n. IG 16812). Both F.D.V. and E.A. are supported by institutional funds from the University of Ferrara. This work was funded with support from the European H2020 office through the COST Action BM1406 “Ion channels and Immune response.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Di Virgilio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

De Marchi, E., Orioli, E., Pegoraro, A., Adinolfi, E., Di Virgilio, F. (2020). Detection of Extracellular ATP in the Tumor Microenvironment, Using the pmeLUC Biosensor. In: Pelegrín, P. (eds) Purinergic Signaling. Methods in Molecular Biology, vol 2041. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9717-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9717-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9716-9

  • Online ISBN: 978-1-4939-9717-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics