Skip to main content

Focal and Restricted Traumatic Injury Models in the Rodent Brain: Limitations, Possibilities, and Challenges

  • Protocol
  • First Online:
Animal Models of Neurotrauma

Part of the book series: Neuromethods ((NM,volume 149))

  • 303 Accesses

Abstract

Animal models of traumatic brain injury are primarily utilized for the purpose of either (a) conducting basic research—for instance regarding the neurocognitive organization of the brain or (b) the development and evaluation of therapeutic interventions—such as pharmacological and behavioral methods as well as environmental manipulations. While studies focusing on development of therapeutic methods may primarily call for the use of more “ecologically valid” models, studies of the neurocognitive organization of the brain may primarily benefit from the use of focal and anatomically restricted lesions. The present chapter focuses on such models. The primary focus of the chapter is a model in which the fimbria-fornix is selectively transected and hippocampal function consequently severely impaired. The method of this transection is described, and the neural and functional consequences of the lesion are reviewed. In order to best utilize such focal lesions in the analysis of neurocognitive organization additional methods are needed. These methods include combined and simultaneously inflicted focal lesions as well as the use of both organic and behavioral “challenge” techniques. Such an approach enables a deeper understanding of the mediating mechanisms at the level of anatomical structure and/or neurotransmitter system and prevents premature conclusions regarding the neurocognitive organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mogensen J (2011) Animal models in neuroscience. In: Hau J, Schapiro SJ (eds) Handbook of laboratory animal science, Animal models, vol 2, 3rd edn. CRC Press LLC, Boca Raton, FL, pp 47–73

    Google Scholar 

  2. Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14:128–142

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bolkvadze T, Pitkänen A (2012) Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. J Neurotrauma 29:789–812

    PubMed  Google Scholar 

  4. Frey LC, Hellier J, Unkart C et al (2009) A novel apparatus for lateral fluid percussion injury in the rat. J Neurosci Methods 177:267–272

    PubMed  Google Scholar 

  5. Wahab RA, Neuberger EJ, Lyeth BG et al (2015) Fluid percussion injury device for the precise control of injury parameters. J Neurosci Methods 248:16–26

    PubMed  Google Scholar 

  6. Flierl MA, Stahel PF, Beauchamp KM et al (2009) Mouse closed head injury model induced by a weight-drop device. Nat Protoc 4:1328–1337

    CAS  PubMed  Google Scholar 

  7. Marmarou A, Foda MAA, van den Brink W et al (1994) A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg 80:291–300

    CAS  PubMed  Google Scholar 

  8. Davidsson J, Risling M (2011) A new model to produce sagittal plane rotational induced diffuse axonal injuries. Front Neurol 2:41. https://doi.org/10.3389/fneur.2011.00041

    Article  PubMed  PubMed Central  Google Scholar 

  9. Risling M, Plantman S, Angeria M et al (2011) Mechanisms of blast induced brain injuries, experimental studies in rats. NeuroImage 54:589–597

    Google Scholar 

  10. Rostami E, Davidsson J, Ng KC et al (2012) A model for mild traumatic brain injury that induces limited transient memory impairment and increased levels of axon related serum biomarkers. Front Neurol 3:115. https://doi.org/10.3389/fneur.2012.00115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huh JW, Widing AG, Raghupathi R (2007) Repetitive mild non-contusive brain trauma in immature rats exacerbates traumatic axonal injury and axonal calpain activation: a preliminary report. J Neurotrauma 24:15–27

    PubMed  Google Scholar 

  12. Williams AJ, Hartings JA, Lu X-CM et al (2005) Characterization of a new rat model of penetrating ballistic brain injury. J Neurotrauma 22:313–331

    PubMed  Google Scholar 

  13. Williams AJ, Hartings JA, Lu X-CM et al (2006) Penetrating ballistic-like brain injury in the rat: differential time courses of haemorrhage, cell death, inflammation, and remote degeneration. J Neurotrauma 23:1828–1846

    PubMed  Google Scholar 

  14. Gaskin S, White NM (2007) Unreinforced spatial (latent) learning is mediated by a circuit that includes dorsal entorhinal cortex and fimbria fornix. Hippocampus 17:586–594

    PubMed  Google Scholar 

  15. Mogensen J, Lauritsen KT, Elvertorp S et al (2004) Place learning and object recognition by rats subjected to transection of the fimbria-fornix and/or ablation of the prefrontal cortex. Brain Res Bull 63:217–236

    PubMed  Google Scholar 

  16. Mogensen J, Holm S (1994) The prefrontal cortex and variants of sequential behaviour: indications of functional differentiation between subdivisions of the rat’s prefrontal cortex. Behav Brain Res 63:89–100

    CAS  PubMed  Google Scholar 

  17. de Bruin JPC, Sànchez-Santed F, Heinsbrock RPW et al (1994) A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze: evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Res 652:323–333

    PubMed  Google Scholar 

  18. Sullivan RM, Gratton A (2002) Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent. Brain Res 927:69–79

    CAS  PubMed  Google Scholar 

  19. Mogensen J, Iversen IH, Divac I (1987) Neostriatal lesions impaired rats’ delayed alternation performance in a T-maze but not in a two-key operant chamber. Acta Neurobiol Exp 47:45–54

    CAS  Google Scholar 

  20. Divac I, Markowitsch HJ, Pritzel M (1978) Behavioral and anatomical consequences of small intra-striatal injections of kainic acid in the rat. Brain Res 151:523–532

    CAS  PubMed  Google Scholar 

  21. Mogensen J, Malá H (2009) Post-traumatic functional recovery and reorganization in animal models. A theoretical and methodological challenge. Scand J Psychol 50:561–573

    PubMed  Google Scholar 

  22. Gram MG, Gade L, Wogensen E et al (2015) Equal effects of typical environmental and specific social enrichment on posttraumatic cognitive functioning after fimbria-fornix transection in rats. Brain Res 1629:182–195

    Google Scholar 

  23. Bigler ED, Blatter DD, Anderson CV et al (1997) Hippocampal volume in normal aging and traumatic brain injury. Am J Neuroradiol 18:11–23

    CAS  PubMed  Google Scholar 

  24. Christidi F, Bigler ED, McCauley SR et al (2011) Diffusion tensor imaging of the perforant pathway zone and its relation to memory function in patients with severe traumatic brain injury. J Neurotrauma 28:711–725

    PubMed  Google Scholar 

  25. Gale SD, Burr RB, Bigler ED et al (1993) Fornix degeneration and memory in traumatic brain injury. Brain Res Bull 32:345–349

    CAS  PubMed  Google Scholar 

  26. Tate DF, Bigler ED (2000) Fornix and hippocampal atrophy in traumatic brain injury. Learn Mem 7:442–446

    CAS  PubMed  Google Scholar 

  27. Yallampalli R, Wilde EA, Bigle ED et al (2013) Acute white matter differences in the fornix following mild traumatic brain injury using diffusion tensor imaging. J Neuroimaging 23:224–227

    PubMed  Google Scholar 

  28. Aggleton JP, Vann SD, Saunders RC (2005) Projections from the hippocampal region to the mammillary bodies in macaque monkeys. Eur J Neurosci 22:2519–2530

    PubMed  Google Scholar 

  29. Amaral DG, Lavenex P (2007) Hippocampal neuroanatomy. In: Andersen P, Morris RGM, Amaral T, Bliss T, O’Keefe J (eds) The hippocampus book. Oxford University Press, New York, pp 37–114

    Google Scholar 

  30. Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    CAS  PubMed  Google Scholar 

  31. Figenschou A, Hu GY, Storm JF (1996) Cholinergic modulation of the action potential in rat hippocampal neurons. Eur J Neurosci 8:211–219

    CAS  PubMed  Google Scholar 

  32. Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hasselmo ME, Giocomo LM (2006) Cholinergic modulation of cortical function. J Mol Neurosci 30:133–135

    CAS  PubMed  Google Scholar 

  34. Mann EO, Tominaga T, Ichikawa M et al (2005) Cholinergic modulation of the spatiotemporal pattern of hippocampal activity in vitro. Neuropharmacology 48:118–133

    CAS  PubMed  Google Scholar 

  35. Roland JJ, Savage LM (2009) The role of cholinergic and GABAergic medial septal/diagonal band cell populations in the emergence of diencephalic amnesia. Neuroscience 160:32–41

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Roland JJ, Janke KL, Servatius RJ et al (2014) GABAergic neurons in the medial septum-diagonal band of Broca (MSDB) are important for acquisition of the classically conditioned eyeblink response. Brain Struct Funct 219:1231–1237

    CAS  PubMed  Google Scholar 

  37. Thinschmidt JS, Frazier CJ, King MA et al (2005) Septal innervation regulates the function of alpha7 nicotinic receptors in CA1 hippocampal interneurons. Exp Neurol 195:342–352

    CAS  PubMed  Google Scholar 

  38. Hasselmo ME, Schnell E, Barkai E (1995) Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J Neurosci 15:5249–5262

    CAS  PubMed  Google Scholar 

  39. Hasselmo ME, Giocomo LM, Brandon MP et al (2010) Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory. Behav Brain Res 215:261–274

    PubMed  Google Scholar 

  40. Bassant MH, Apartis E, Jazat-Poindessous FR et al (1995) Selective immunolesion of the basal forebrain cholinergic neurons: effects on hippocampal activity during sleep and wakefulness in the rat. Neurodegeneration 4:61–70

    CAS  PubMed  Google Scholar 

  41. Burgess N, O’Keefe J (2005) The theta rhythm. Hippocampus 15:825–826

    PubMed  Google Scholar 

  42. Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340

    CAS  PubMed  Google Scholar 

  43. Manns JR, Zilli EA, Ong KC et al (2007) Hippocampal CA1 spiking during encoding and retrieval: relation to theta phase. Neurobiol Learn Mem 87:9–20

    PubMed  Google Scholar 

  44. Ikonen S, McMahan R, Gallagher M et al (2002) Cholinergic system regulation of spatial representation by the hippocampus. Hippocampus 12:386–397

    PubMed  Google Scholar 

  45. Hasselmo ME, Eichenbaum H (2005) Hippocampal mechanisms for the context-dependent retrieval of episodes. Neural Netw 18:1172–1190

    PubMed  PubMed Central  Google Scholar 

  46. Roland JJ, Stewart AL, Janke KL et al (2014) Medial septum-diagonal band of Broca (MSDB) GABAergic regulation of hippocampal acetylcholine efflux is dependent on cognitive demands. J Neurosci 34:506–514

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gould E, Tanapat P, Rydel T et al (2000) Regulation of hippocampal neurogenesis in adulthood. Biol Psychiatry 48:715–720

    CAS  PubMed  Google Scholar 

  48. Rolando C, Taylor V (2014) Neural stem cell of the hippocampus: development, physiology regulation, and dysfunction in disease. Curr Top Dev Biol 107:183–206

    CAS  PubMed  Google Scholar 

  49. Shors TJ, Miesegaes G, Beylin A et al (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376

    CAS  PubMed  Google Scholar 

  50. Shors TJ, Townsend DA, Zhao M et al (2002) Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12:578–584

    PubMed  PubMed Central  Google Scholar 

  51. Paxinos G, Watson BD (2006) The rat brain in stereotaxic coordinates, 6th edn. Academic, Amsterdam

    Google Scholar 

  52. Ginsberg SD, Martin LJ (2002) Axonal transection in adult rat brain induces transsynaptic apoptosis and persistent atrophy of target neurons. J Neurotrauma 19:99–109

    PubMed  Google Scholar 

  53. Ginsberg SD, Portera-Cailliau C, Martin LJ (1999) Fimbria-fornix transection and excitotoxicity produce similar neurodegeneration in the septum. Neuroscience 88:1059–1071

    CAS  PubMed  Google Scholar 

  54. Frotscher M, Deller T, Heimrich B et al (1996) Survival, regeneration and sprouting of central neurons: the rat septohippocampal projection as a model. Ann Anat 178:311–315

    CAS  PubMed  Google Scholar 

  55. Naumann T, Kermer P, Frotscher M (1994) Fine structure of rat septohippocampal neurons. III. Recovery of choline acetyltransferase immunoreactivity after fimbria-fornix transection. J Comp Neurol 350:161–170

    CAS  PubMed  Google Scholar 

  56. Naumann T, Deller T, Frotscher M (1996) Multiple projections are unlikely to account for the survival of rat medial septal neurons after axotomy. Neurosci Lett 211:117–120

    CAS  PubMed  Google Scholar 

  57. Peterson GM, Lanford GW, Powell EW (1990) Fate of septohippocampal neurons following fimbria-fornix transection: a time course analysis. Brain Res Bull 25:129–137

    CAS  PubMed  Google Scholar 

  58. Ginsberg SD, Martin LJ (1998) Ultrastructural analysis of the progression of neurodegeneration in the septum following fimbria-fornix transection. Neuroscience 86:1259–1272

    CAS  PubMed  Google Scholar 

  59. Lahtinen H, Miettinen R, Ylinen A et al (1993) Biochemical and morphological changes in the rat hippocampus following transection of the fimbria-fornix. Brain Res Bull 31:311–318

    CAS  PubMed  Google Scholar 

  60. Blaker SN, Armstrong DM, Gage FH (1988) Cholinergic neurons within the rat hippocampus: response to fimbria-fornix transection. J Comp Neurol 272:127–138

    CAS  PubMed  Google Scholar 

  61. Lee J, Chai SY, Morris MJ et al (2003) Effect of fimbria-fornix lesion on 125I-angiotensin IV (Ang IV) binding in the guinea pig hippocampus. Brain Res 979:7–14

    CAS  PubMed  Google Scholar 

  62. Cooper-Kuhn CM, Winkler J, Kuhn HG (2004) Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J Neurosci Res 77:155–165

    CAS  PubMed  Google Scholar 

  63. Van der Borght K, Mulder J, Keijser JN et al (2005) Input from the medial septum regulates adult hippocampal neurogenesis. Brain Res Bull 67:117–125

    PubMed  Google Scholar 

  64. Mohapel P, Leanza G, Kokaia M et al (2005) Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging 26:939–946

    CAS  PubMed  Google Scholar 

  65. Zou L, Jin G, Zhang X et al (2010) Proliferation, migration, and neuronal differentiation of the endogenous neural progenitors in hippocampus after fimbria fornix transection. Int J Neurosci 120:192–200

    PubMed  Google Scholar 

  66. Zhang X, Jin G, Wang L et al (2009) Brn-4 is upregulated in the deafferented hippocampus and promotes neuronal differentiation of neural progenitors in vitro. Hippocampus 19:176–186

    CAS  PubMed  Google Scholar 

  67. Shimazaki T, Arsenijevic Y, Ryan AK et al (1999) A role for the POU-III transcription factor Brn-4 in the regulation of striatal neuron precursor differentiation. EMBO J 18:444–456. https://doi.org/10.1093/emboj/18.2.444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dijkhuizen RM, Muller HJ, Tamminga KS et al (1992) 1H-NMR imaging of fimbria fornix lesions in the rat brain. Brain Topogr 5:147–151

    CAS  PubMed  Google Scholar 

  69. Dijkhuizen RM, Muller HJ, Josephy M et al (1996) Mechanical lesions of the fimbria fornix in rat brain studied by 1H-magnetic resonance imaging. Evidence for long-lasting dynamic alterations in the ipsilateral ventricular system. Eur Neuropsychopharmacol 6:21–27

    CAS  PubMed  Google Scholar 

  70. Almaguer W, Capdevila V, Ramirez M et al (2005) Post-training stimulation of the basolateral amygdala improves spatial learning in rats with lesion of the fimbria-fornix. Restor Neurol Neurosci 23:43–50

    PubMed  Google Scholar 

  71. Cain DP, Boon F, Corcoran ME (2006) Thalamic and hippocampal mechanisms in spatial navigation: a dissociation between brain mechanisms for learning how versus learning where to navigate. Behav Brain Res 170:241–256

    PubMed  Google Scholar 

  72. de Bruin JP, Moita MP, de Brabander HM et al (2001) Place and response learning of rats in a Morris water maze: differential effects of fimbria fornix and medial prefrontal cortex lesions. Neurobiol Learn Mem 75:164–178

    PubMed  Google Scholar 

  73. Hannesson DK, Skelton RW (1998) Recovery of spatial performance in the Morris water maze following bilateral transection of the fimbria/fornix in rats. Behav Brain Res 90:35–56

    CAS  PubMed  Google Scholar 

  74. Mogensen J, Miskowiak K, Sørensen TA et al (2004) Erythropoietin improves place learning in fimbria-fornix-transected rats and modifies the search pattern of normal rats. Pharmacol Biochem Behav 77:381–390

    CAS  PubMed  Google Scholar 

  75. Mogensen J, Moustgaard A, Khan U et al (2005) Egocentric spatial orientation in a water maze by rats subjected to transection of the fimbria-fornix and/or ablation of the prefrontal cortex. Brain Res Bull 65:41–58

    PubMed  Google Scholar 

  76. Wörtwein G, Saerup LH, Charlottenfeld-Starpov D et al (1995) Place learning by fimbria-fornix transected rats in a modified water maze. Int J Neurosci 82:71–81

    PubMed  Google Scholar 

  77. Mogensen J, Pedersen TK, Holm S et al (1995) Prefrontal cortical mediation of rats’ place learning in a modified water maze. Brain Res Bull 38:425–434

    CAS  PubMed  Google Scholar 

  78. Mogensen J, Christensen LH, Johansson A et al (2002) Place learning in scopolamine treated rats: the roles of distal cues and catecholaminergic mediation. Neurobiol Learn Mem 78:139–166

    PubMed  Google Scholar 

  79. Malá H, Alsina CG, Madsen KS et al (2005) Erythropoietin improves place learning in an 8-arm radial maze in fimbria-fornix transected rats. Neural Plast 12:329–340

    PubMed  PubMed Central  Google Scholar 

  80. Malá H, Castro MR, Jørgensen KD et al (2007) Effects of erythropoietin on posttraumatic place learning in fimbria-fornix transected rats after a 30-day postoperative pause. J Neurotrauma 24:1647–1657

    PubMed  Google Scholar 

  81. Malá H, Castro MR, Knippel J et al (2008) Therapeutic effects of a restraint procedure on posttraumatic place learning in fimbria-fornix transected rats. Brain Res 1217:221–231

    PubMed  Google Scholar 

  82. Sziklas V, Petrides M (2002) Effects of lesions to the hippocampus or the fornix on allocentric conditional associative learning in rats. Hippocampus 12:543–550

    CAS  PubMed  Google Scholar 

  83. Mogensen J, Hjortkjaer J, Ibervang KL et al (2007) Prefrontal cortex and hippocampus in posttraumatic functional recovery: spatial delayed alternation by rats subjected to transection of the fimbria-fornix and/or ablation of the prefrontal cortex. Brain Res Bull 73:86–95

    PubMed  Google Scholar 

  84. Bussey TJ, Duck J, Muir JL et al (2000) Distinct patterns of behavioural impairments resulting from fornix transection or neurotoxic lesions of the perirhinal and postrhinal cortices in the rat. Behav Brain Res 111:187–202

    CAS  PubMed  Google Scholar 

  85. Mumby DG (2001) Perspectives on object-recognition memory following hippocampal damage: lessons from studies in rats. Behav Brain Res 127:159–181

    CAS  PubMed  Google Scholar 

  86. Charles DP, Gaffan D, Buckley MJ (2004) Impaired recency judgments and intact novelty judgments after fornix transection in monkeys. J Neurosci 24:2037–2044

    CAS  PubMed  Google Scholar 

  87. Hudon C, Dore FY, Goulet S (2002) Spatial memory and choice behavior in the radial arm maze after fornix transection. Prog Neuropsychopharmacol Biol Psychiatry 26:1113–1123

    PubMed  Google Scholar 

  88. Malá H, Andersen LG, Christensen RF et al (2015) Prefrontal cortex and hippocampus in behavioural flexibility and posttraumatic functional recovery: reversal learning and set-shifting in rats. Brain Res Bull 116:34–44

    PubMed  Google Scholar 

  89. Bannerman DM, Gilmour G, Norman G et al (2001) The time course of the hyperactivity that follows lesions or temporary inactivation of the fimbria-fornix. Behav Brain Res 120:1–11

    CAS  PubMed  Google Scholar 

  90. Kwok SC, Buckley MJ (2006) Fornix transection impairs exploration but not locomotion in ambulatory macaque monkeys. Hippocampus 16:655–663

    PubMed  Google Scholar 

  91. Oddie SD, Kirk IJ, Gorny BP et al (2002) Impaired dodging in food-conflict following fimbria-fornix transection in rats: a novel hippocampal formation deficit. Brain Res Bull 57:565–573

    PubMed  Google Scholar 

  92. Aggleton JP, Poirier GL, Aggleton HS et al (2009) Lesions of the fornix and anterior thalamic nuclei dissociate different aspects of hippocampal-dependent spatial learning: implications for the neural basis of scene learning. Behav Neurosci 123:504–519

    PubMed  Google Scholar 

  93. Brasted PJ, Bussey TJ, Murray EA et al (2002) Fornix transection impairs conditional visuomotor learning in tasks involving nonspatially differentiated responses. J Neurophysiol 87:631–633

    PubMed  Google Scholar 

  94. Brasted PJ, Bussey TJ, Murray EA et al (2003) Role of the hippocampal system in associative learning beyond the spatial domain. Brain 126:1202–1223

    CAS  PubMed  Google Scholar 

  95. Vann SD, Erichsen JT, O’Mara SM et al (2011) Selective disconnection of the hippocampal formation projections to the mammillary bodies produces only mild deficits on spatial memory tasks: implications for fornix function. Hippocampus 21:945–957

    PubMed  Google Scholar 

  96. Parslow DM, Rose D, Brooks B et al (2004) Allocentric spatial memory activation of the hippocampal formation measured with fMRI. Neuropsychology 18:450–461

    PubMed  Google Scholar 

  97. Parslow DM, Morris RG, Fleminger S et al (2005) Allocentric spatial memory in humans with hippocampal lesions. Acta Psychol (Amst) 118:123–147

    Google Scholar 

  98. Shrager Y, Bayley PJ, Bontempi B et al (2007) Spatial memory and the human hippocampus. Proc Natl Acad Sci U S A 104:2961–2966

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mogensen J (2014) Reorganization of Elementary Functions (REF) after brain injury and in the intact brain: a novel understanding of neurocognitive organization and reorganization. In: Costa J, Villalba E (eds) Horizons in neuroscience research, vol 15. Nova Science Publishers, Inc, New York, pp 99–140

    Google Scholar 

  100. Buller DJ, Hardcastle VG (2000) Evolutionary psychology, meet developmental neurobiology: against promiscuous modularity. Brain Mind 1:307–325

    Google Scholar 

  101. Carney N, Chesnut RM, Maynard H et al (1999) Effect of cognitive rehabilitation on outcomes for persons with traumatic brain injury: a systematic review. J Head Trauma Rehabil 14:277–307

    CAS  PubMed  Google Scholar 

  102. León-Carrión J, Machuca-Murga F (2001) Spontaneous recovery of cognitive functions after severe brain injury: when are neurocognitive sequelae established? Revista Española de Neuropsicologia 3:58–67

    Google Scholar 

  103. Mogensen J (2011) Almost unlimited potentials of a limited neural plasticity: levels of plasticity in development and reorganization of the injured brain. J Conscious Stud 18:13–45

    Google Scholar 

  104. Mogensen J (2011) Reorganization in the injured brain: implications for studies of the neural substrate of cognition. Front Psychol 2:7. https://doi.org/10.3389/fpsyg.2011.00007

    Article  PubMed  PubMed Central  Google Scholar 

  105. Overgaard M, Mogensen J (2011) A framework for the study of multiple realizations: the importance of levels of analysis. Front Psychol 2:79. https://doi.org/10.3389/fpsyg.2011.00079

    Article  PubMed Central  Google Scholar 

  106. Panksepp J, Panksepp JB (2000) The seven sins of evolutionary psychology. Evol Cogn 6:108–131

    Google Scholar 

  107. Ramachandran VS, Blakeslee S (1998) Phantoms in the brain: probing the mysteries of the human mind. William Morrow, New York

    Google Scholar 

  108. Rohling ML, Faust ME, Beverly B et al (2009) Effectiveness of cognitive rehabilitation following acquired brain injury: a meta-analytic re-examination of Cicerone et al.’s (2000, 2005) systematic reviews. Neuropsychology 23:20–39

    PubMed  Google Scholar 

  109. Olton DS (1978) The function of septo-hippocampal connections in spatially organized behaviour. In: Functions of the septo-hippocampal system, Ciba, Fdn. Symp. 58. Elsevier, New York, pp 327–342

    Google Scholar 

  110. Cassel J-C, Cassel S, Galani R et al (1998) Fimbria-fornix vs selective hippocampal lesions in rats: effects on locomotor activity and spatial learning and memory. Neurobiol Learn Mem 69:22–45

    CAS  PubMed  Google Scholar 

  111. DiMattia BD, Kesner RP (1988) Spatial cognitive maps: differential role of parietal cortex and hippocampal formation. Behav Neurosci 102:471–480

    CAS  PubMed  Google Scholar 

  112. Morris RGM, Garrud P, Rawlins JNP et al (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    CAS  PubMed  Google Scholar 

  113. Morris RG, Hagan JJ, Rawlins JN (1986) Allocentric spatial learning by hippocampectomised rats: a further test of the “spatial mapping” and “working memory” theories of hippocampal function. Q J Exp Psychol 38:365–395

    CAS  Google Scholar 

  114. Packard MG, McGaugh JL (1992) Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: further evidence for multiple memory systems. Behav Neurosci 106:439–446

    CAS  PubMed  Google Scholar 

  115. Sutherland RJ, Rodriguez AJ (1989) The role of the fornix/fimbria and some related subcortical structures in place learning and memory. Behav Brain Res 32:265–277

    CAS  PubMed  Google Scholar 

  116. Sutherland RJ, Kolb B, Whishaw IQ (1982) Spatial mapping: definitive disruption by hippocampal or medial frontal cortical damage in the rat. Neurosci Lett 31:271–276

    CAS  PubMed  Google Scholar 

  117. Sutherland RJ, Whishaw IQ, Kolb B (1983) A behavioural analysis of spatial localization following electrolytic, kainate- or colchicine-induced damage to the hippocampal formation in the rat. Behav Brain Res 7:133–153

    CAS  PubMed  Google Scholar 

  118. Whishaw IQ, Jarrard L (1995) Similarities vs differences in place learning and circadian activity in rats after fimbria-fornix transection or ibotenate removal of hippocampal cells. Hippocampus 5:595–604

    CAS  PubMed  Google Scholar 

  119. Whishaw IQ, Cassel JC, Jarrard LE (1995) Rats with fimbria-fornix lesions display a place response in a swimming pool: a dissociation between getting there and knowing where. J Neurosci 15:5779–5788

    CAS  PubMed  Google Scholar 

  120. Kolb B, Pittman K, Sutherland RJ et al (1982) Dissociation of the contributions of the prefrontal cortex and dorsomedial thalamic nucleus to spatially guided behavior in the rat. Behav Brain Res 6:365–378

    CAS  PubMed  Google Scholar 

  121. Kolb B, Sutherland RJ, Whishaw IQ (1983) A comparison of the contributions of the frontal and parietal association cortex to spatial localization in rats. Behav Neurosci 97:13–27

    CAS  PubMed  Google Scholar 

  122. Kolb B, Buhrmann K, McDonald R et al (1994) Dissociation of the medial prefrontal, posterior parietal, and posterior temporal cortex for spatial navigation and recognition in the rat. Cereb Cortex 4:664–680

    CAS  PubMed  Google Scholar 

  123. Greene E (1971) Comparison of hippocampal depression and hippocampal lesion. Exp Neurol 31:313–325

    CAS  PubMed  Google Scholar 

  124. Greene E, Stauff C (1974) Behavioural role of hippocampal connections. Exp Neurol 45:141–160

    CAS  PubMed  Google Scholar 

  125. Greene E, Stauff C, Walters J (1972) Recovery of function with two-stage fornix lesions. Exp Neurol 37:14–22

    CAS  PubMed  Google Scholar 

  126. Means LW, Leander JD, Isaacson RL (1971) The effect of hippocampectomy on alteration behaviour and response to novelty. Physiol Behav 6:17–22

    CAS  PubMed  Google Scholar 

  127. Racine RJ, Kimble DP (1965) Hippocampal lesions and delayed alternation in the rat. Psychon Sci 3:285–286

    Google Scholar 

  128. Larsen JK, Divac I (1978) Selective ablations within the prefrontal cortex of the rat and performance of delayed alternation. Physiol Psychol 6:15–17

    Google Scholar 

  129. Mogensen J (1991) Influences of the rearing conditions on functional properties of the rat’s prefrontal system. Behav Brain Res 42:135–142

    CAS  PubMed  Google Scholar 

  130. Wikmark RGE, Divac I, Weiss R (1973) Retention of spatial delayed alternation in rats with lesions in the frontal lobes. Brain Behav Evol 8:329–339

    CAS  PubMed  Google Scholar 

  131. Wörtwein G, Mogensen J, Divac I (1993) Retention and relearning of spatial delayed alternation in rats after combined or sequential lesions of the prefrontal and parietal cortex. Acta Neurobiol Exp 53:357–366

    Google Scholar 

  132. Wörtwein G, Mogensen J, Divac I (1994) Retention and relearning of spatial delayed alternation in rats after ablation of the prefrontal or total non prefrontal isocortex. Behav Brain Res 63:127–131

    PubMed  Google Scholar 

  133. Berger TW, Orr WB (1983) Hippocampectomy selectively disrupts discrimination reversal conditioning of the rabbit nictitating membrane response. Behav Brain Res 8:49–68

    CAS  PubMed  Google Scholar 

  134. Brady AM (2009) Neonatal ventral hippocampal lesions disrupt set-shifting ability in adult rats. Behav Brain Res 205:294–298

    PubMed  Google Scholar 

  135. Fitz NF, Gibbs RB, Johnson DA (2008) Selective lesion of septal cholinergic neurons in rats impairs acquisition of a delayed matching to position T-maze task by delaying the shift from a response to a place strategy. Brain Res Bull 77:356–360

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Jarrard LE, Luu LP, Davidson TL (2012) A study of hippocampal structure-function relations along the septo-temporal axis. Hippocampus 22:680–692

    PubMed  Google Scholar 

  137. Kosaki Y, Watanabe S (2012) Dissociable roles of the medial prefrontal cortex, the anterior cingulate cortex, and the hippocampus in behavioural flexibility revealed by serial reversal of three-choice discrimination in rats. Behav Brain Res 227:81–90

    PubMed  Google Scholar 

  138. Marquis JP, Goulet S, Dore FY (2008) Neonatal ventral hippocampus lesions disrupt extra-dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats. Neurobiol Learn Mem 90:339–346

    PubMed  Google Scholar 

  139. Silveira JM, Kimble DP (1968) Brightness discrimination and reversal in hippocampally lesioned rats. Physiol Behav 3:625–630

    Google Scholar 

  140. Winocur G, Olds J (1978) Effects of context manipulation on memory and reversal learning in rats with hippocampal lesions. J Comp Physiol Psychol 92:312–321

    CAS  PubMed  Google Scholar 

  141. Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    CAS  PubMed  Google Scholar 

  142. Floresco SB, Magyar O (2006) Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology (Berl) 188:567–585

    CAS  Google Scholar 

  143. Floresco SB, Magyar O, Ghods-Sharifi S et al (2006) Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology 31:297–309

    CAS  PubMed  Google Scholar 

  144. Floresco SB, Block AE, Tse MT (2008) Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 190:85–96

    PubMed  Google Scholar 

  145. Granon S, Poucet B (1995) Medial prefrontal lesions in the rat and spatial navigation: evidence for impaired planning. Behav Neurosci 109:474–484

    CAS  PubMed  Google Scholar 

  146. Joel D, Weiner I, Feldon J (1997) Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of the Wisconsin Card Sorting Test, but do not disrupt latent inhibition: implications for animal models of schizophrenia. Behav Brain Res 85:187–201

    CAS  PubMed  Google Scholar 

  147. Lee I, Solivan F (2008) The roles of the medial prefrontal cortex and hippocampus in a spatial paired-association task. Learn Mem 15:357–367

    PubMed  PubMed Central  Google Scholar 

  148. Mogensen J, Jespersen KH, Nielsen NH et al (2003) Shifts between responses and strategies in rats after ablations of the prefrontal cortex. Homeostasis 42:29–37

    Google Scholar 

  149. Mogensen J, Malá H, Vangkilde SA et al (2003) Retention and reversals of a sequential behavioural task after prefrontal cortical lesions in the rat. Homeostasis 42:110–121

    Google Scholar 

  150. Ragozzino ME, Detrick S, Kesner RP (1999) Involvement of the prelimbic-infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. J Neurosci 19:4585–4594

    CAS  PubMed  Google Scholar 

  151. Rich EL, Shapiro ML (2007) Prelimbic/infralimbic inactivation impairs memory for multiple task switches, but not flexible selection of familiar tasks. J Neurosci 27:4747–4755

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mogensen J (2015) Recovery, compensation and reorganization in neuropathology—levels of conceptual and methodological challenges. In: Tracy JI, Hampstead BM, Sathian K (eds) Cognitive plasticity in neurologic disorders. Oxford University Press, New York, pp 3–28

    Google Scholar 

  153. Mogensen J, Wörtwein G, Plenge P et al (2003) Serotonin, locomotion, exploration, and place recall in the rat. Pharmacol Biochem Behav 75:381–395

    CAS  PubMed  Google Scholar 

  154. Patterson K, Plaut DC (2009) “Shallow draughts intoxicate the brain”: lessons from cognitive science for cognitive neuropsychology. Top Cogn Sci 1:39–58

    PubMed  Google Scholar 

  155. Barrett HC, Kurzban R (2006) Modularity in cognition: framing the debate. Psychol Rev 113:628–647

    PubMed  Google Scholar 

  156. Fodor J (2000) The mind doesn’t work that way: the scope and limits of computational psychology. MIT Press, Cambridge, MA

    Google Scholar 

  157. Pinker S (1999) How the mind works. Penguin Books, London

    Google Scholar 

  158. Carandini M (2012) From circuits to behavior: a bridge too far? Nat Neurosci 15:507–509

    CAS  PubMed  Google Scholar 

  159. Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. W.H. Freeman, San Francisco, CA

    Google Scholar 

  160. Marr D, Poggio T (1977) From understanding computation to understanding neural circuitry. Neurosci Res Progr Bull 15:470–488

    Google Scholar 

  161. Mogensen J (2012) Cognitive recovery and rehabilitation after brain injury: mechanisms, challenges and support. In: Agrawal A (ed) Brain injury—functional aspects, rehabilitation and prevention. InTech, Rijeka, Croatia, pp 121–150

    Google Scholar 

  162. Mogensen J (2012) Reorganization of Elementary Functions (REF) after brain injury: implications for the therapeutic interventions and prognosis of brain injured patients suffering cognitive impairments. In: Schäfer AJ, Müller J (eds) Brain damage: causes management and prognosis. Nova Science Publishers, Inc., Hauppauge, NY, pp 1–40

    Google Scholar 

  163. Brines ML, Ghezzi P, Keenan S et al (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 97:10526–10531

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Calapai G, Marciano MC, Corica F et al (2000) Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur J Pharmacol 401:349–356

    CAS  PubMed  Google Scholar 

  165. Siren AL, Fratelli M, Brines M et al (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A 98:4044–4049

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Alafaci C, Salpietro F, Grasso G et al (2000) Effect of recombinant human erythropoietin on cerebral ischemia following experimental subarachnoid hemorrhage. Eur J Pharmacol 406:219–225

    CAS  PubMed  Google Scholar 

  167. Buemi M, Grasso G, Corica F et al (2000) In vivo evidence that erythropoietin has a neuroprotective effect during subarachnoid hemorrhage. Eur J Pharmacol 392:31–34

    CAS  PubMed  Google Scholar 

  168. Grasso G (2001) Neuroprotective effect of recombinant human erythropoietin in experimental subarachnoid hemorrhage. J Neurosurg Sci 45:7–14

    CAS  PubMed  Google Scholar 

  169. Springborg JB, Ma XD, Rochat P et al (2002) A single subcutaneous bolus of erythropoietin normalizes cerebral blood flow autoregulation after subarachnoid haemorrhage in rats. Br J Pharmacol 135:823–829

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Mogensen J, Jensen C, Kingod SC et al (2008) Erythropoietin improves spatial delayed alternation in a T-maze in fimbria-fornix transected rats. Behav Brain Res 186:215–221

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was supported by a grant from the Danish Council for Independent Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Mogensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mogensen, J., Malá, H. (2019). Focal and Restricted Traumatic Injury Models in the Rodent Brain: Limitations, Possibilities, and Challenges. In: Risling, M., Davidsson, J. (eds) Animal Models of Neurotrauma. Neuromethods, vol 149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9711-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9711-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9709-1

  • Online ISBN: 978-1-4939-9711-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics