Skip to main content

Application of 2D-DIGE and iTRAQ Workflows to Analyze CSF in Gliomas

  • Protocol
  • First Online:
Book cover Cerebrospinal Fluid (CSF) Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2044))

Abstract

Proteomics is an indispensable tool for disease biomarker discovery. It is widely used for the analysis of biological fluids such as cerebrospinal fluid (CSF), blood, and saliva, which further aids in our understanding of disease incidence and progression. CSF is often the biospecimen of choice in case of intracranial tumors, as rapid changes in the tumor microenvironment can be easily assessed due to its close proximity to the brain. On the contrary studies comprising of serum or plasma samples do not truly reflect the underlying molecular alterations due to the presence of protective blood-brain barrier. We have described in here the detailed workflows for two advanced proteomics techniques, namely, 2D-DIGE (two-dimensional difference in-gel electrophoresis) and iTRAQ (isobaric tag for relative and absolute quantitation), for CSF analysis. Both of these techniques are very sensitive and widely used for quantitative proteomics analysis.

Aishwarya A. Rao and Kanika Mehta are the joint first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7):489–501

    Article  CAS  Google Scholar 

  2. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15(11):1311–1333

    Article  CAS  Google Scholar 

  3. Gladson CL, Prayson RA, Liu WM (2010) The pathobiology of glioma tumors. Annu Rev Pathol 5:33–50

    Article  CAS  Google Scholar 

  4. Schittenhelm J (2017) Recent advances in subtyping tumors of the central nervous system using molecular data. Expert Rev Mol Diagn 17(1):83–94

    Article  CAS  Google Scholar 

  5. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol 20(suppl_4):iv1–iv86

    Article  Google Scholar 

  6. Gollapalli K, Ray S, Srivastava R, Renu D, Singh P, Dhali S, BajpaiDikshit J, Srikanth R, Moiyadi A, Srivastava S (2012) Investigation of serum proteome alterations in human glioblastoma multiforme. Proteomics 14:2378–2390

    Article  Google Scholar 

  7. Somasundaram K, Nijaguna MB, Kumar DM (2009) Serum proteomics of glioma: methods and applications. Expert Rev Mol Diagn 7:695–707 

    Article  CAS  Google Scholar 

  8. Gahoi N, Malhotra D, Moiyadi A, Varma SG, Gandhi MN, Srivastava S (2018) Multi-pronged proteomic analysis to study the glioma pathobiology using cerebrospinal fluid samples. Proteomics Clin Appl 3:e1700056

    Article  Google Scholar 

  9. Brown KJ, Seol H, Pillai DK, Sankoorikal BJ, Formolo CA, Mac J, Edwards NJ, Rose MC, Hathout Y (2013) The human secretome atlas initiative: implications in health and disease conditions. Biochim Biophys Acta 1834(11):2454–2461

    Article  CAS  Google Scholar 

  10. Verheul C, Kleijn A, Lamfers MLM (2017) Cerebrospinal fluid biomarkers of malignancies located in the central nervous system. Handb Clin Neurol 146:139–169

    Article  Google Scholar 

  11. Shen F, Zhang Y, Yao Y, Hua W, Zhang HS, Wu JS, Zhong P, Zhou LF (2014) Proteomic analysis of cerebrospinal fluid: toward the identification of biomarkers for gliomas. Neurosurg Rev 37(3):367–380

    Article  Google Scholar 

  12. Tan Z, Liu R, Zheng L, Hao S, Fu C, Li Z, Deng X, Jang T, Merchant M, Whitin JC, Guo M, Cohen HJ, Recht L, Ling XB (2015) Cerebrospinal fluid protein dynamic driver network: at the crossroads of brain tumorigenesis. Methods 83:36–43

    Article  CAS  Google Scholar 

  13. Guo J, Sun Z, Xiao S, Liu D, Jin G, Wang E, Zhou J, Zhou J (2009) Proteomic analysis of the cerebrospinal fluid of Parkinson's disease patients. Cell Res 12:1401–1403

    Article  Google Scholar 

  14. Khoonsari PE, Häggmark A, Lönnberg M, Mikus M, Kilander L, Lannfelt L, Bergquist J, Ingelsson M, Nilsson P, Kultima K, Shevchenko G (2016) Analysis of the cerebrospinal fluid proteome in Alzheimer’s disease. PLoS One 11(3):e0150672

    Article  Google Scholar 

  15. Sjödin S, Hansson O, Öhrfelt A, Brinkmalm G, Zetterberg H, Brinkmalm A, Blennow K (2017) Mass spectrometric analysis of cerebrospinal fluid ubiquitin in Alzheimer’s disease and Parkinsonian disorders. Proteomics Clin Appl 11(11–12)

    Article  Google Scholar 

  16. Dayon L, Núñez Galindo A, Wojcik J, Cominetti O, Corthésy J, Oikonomidi A, Henry H, Kussmann M, Migliavacca E, Severin I, Bowman GL, Popp J (2018) Alzheimer disease pathology and the cerebrospinal fluid proteome. Alzheimers Res Ther 10(1):66

    Article  Google Scholar 

  17. Yuan X, Russell T, Wood G, Desiderio DM (2002) Analysis of the human lumbar cerebrospinal fluid proteome. Electrophoresis 7-8:1185–1196

    Article  Google Scholar 

  18. Shalaby T, Achini F, Grotzer MA (2016) Targeting cerebrospinal fluid for discovery of brain cancer biomarkers. J Cancer Metastasis Treat 2:176–187

    Article  CAS  Google Scholar 

  19. Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669

    Article  CAS  Google Scholar 

  20. Unlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18(11):2071–2077

    Article  Google Scholar 

  21. Gharbi S, Gaffney P, Yang A, Zvelebil MJ, Cramer R, Waterfield MD, Timms JF (2002) Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics 1(2):91–98

    Article  CAS  Google Scholar 

  22. Ohlendieck K (ed) (2018) Difference gel electrophoresis methods and protocols. Methods in molecular biology, vol 1664. Humana Press, New York, NY, p 3

    Book  Google Scholar 

  23. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3(1):36–44

    Article  CAS  Google Scholar 

  24. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Article  CAS  Google Scholar 

  25. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank the High-Resolution Mass Spectrometry-Based Proteomics Research and Training Facility at IIT Bombay supported by the Department of Biotechnology (BT/PR13114/INF/22/206/2015) for processing the samples submitted for protein identification and quantification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeeva Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rao, A.A., Mehta, K., Gahoi, N., Srivastava, S. (2019). Application of 2D-DIGE and iTRAQ Workflows to Analyze CSF in Gliomas. In: Santamaría, E., Fernández-Irigoyen, J. (eds) Cerebrospinal Fluid (CSF) Proteomics. Methods in Molecular Biology, vol 2044. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9706-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9706-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9705-3

  • Online ISBN: 978-1-4939-9706-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics