Skip to main content

Monitoring the Cerebrospinal Fluid Cytokine Profile Using Membrane-Based Antibody Arrays

  • Protocol
  • First Online:
Cerebrospinal Fluid (CSF) Proteomics

Abstract

The brain is the most complex organ of the human body, and the study of the different diseases and injuries that affect it is far behind the ones that affect other organs. Some of these pathologies such as neurodegenerative diseases, physical injuries, and cancer present an important alteration in its inflammatory component, which affects their outcome in a positive or negative way. For this reason, it is important to characterize the joint expression of the cytokines and growth factors (GF) that are part of this inflammatory component. The cerebrospinal fluid (CSF) is in direct contact with the brain and spinal cord, being the best biofluid to study the cytokine and GF secretion patterns of these conditions. Currently, the proteomic workflows based on mass spectrometry (MS) are unable to easily detect these proteins in CSF. In this chapter, we describe a method based on cytokine membrane arrays to characterize, in a straightforward way, the secretion profile of different cytokines and GF at once in CSF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daneman R, Prat A (2015) The blood–brain barrier. Cold Spring Harb Perspect Biol 7:a020412. https://doi.org/10.1101/cshperspect.a020412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Van Gool AJ, Hendrickson RC (2012) The proteomic toolbox for studying cerebrospinal fluid. Expert Rev Proteomics 9:165–179. https://doi.org/10.1586/epr.12.6

    Article  CAS  PubMed  Google Scholar 

  3. de Boer AG, Gaillard PJ (2007) Drug targeting to the brain. Annu Rev Pharmacol Toxicol 47:323–355. https://doi.org/10.1146/annurev.pharmtox.47.120505.105237

    Article  CAS  PubMed  Google Scholar 

  4. Fung A, Vizcaychipi M, Lloyd D, Wan Y, Ma D (2012) Central nervous system inflammation in disease related conditions: mechanistic prospects. Brain Res 1446:144–155. https://doi.org/10.1016/j.brainres.2012.01.061

    Article  CAS  PubMed  Google Scholar 

  5. Eikelenboom P, van Exel E, Hoozemans JJM, Veerhuis R, Rozemuller AJM, van Gool WA (2010) Neuroinflammation – an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener Dis 7:38–41. https://doi.org/10.1159/000283480

    Article  CAS  PubMed  Google Scholar 

  6. Perry VH, Nicoll JAR, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201. https://doi.org/10.1038/nrneurol.2010.17

    Article  PubMed  Google Scholar 

  7. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397. https://doi.org/10.1016/S1474-4422(09)70062-6

    Article  CAS  PubMed  Google Scholar 

  8. Zeni P, Doepker E, Schulze-Topphoff U, Huewel S, Tenenbaum T, Galla H-J (2007) MMPs contribute to TNF-alpha-induced alteration of the blood-cerebrospinal fluid barrier in vitro. Am J Physiol Cell Physiol 293:C855. https://doi.org/10.1152/ajpcell.00470.2006

    Article  CAS  PubMed  Google Scholar 

  9. Tsai MC, Wei CP, Lee DY, Tseng YT, Tsai MD, Shih YL, Lee YH, Chang SF, Leu SJ (2008) Inflammatory mediators of cerebrospinal fluid from patients with spinal cord injury. Surg Neurol 70:19–24. https://doi.org/10.1016/j.surneu.2007.09.033

    Article  Google Scholar 

  10. Westermark B (2012) Glioblastoma—a moving target. Ups J Med Sci 117:251–256. https://doi.org/10.3109/03009734.2012.676574

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jayaram S, Gupta MK, Polisetty RV, Cho WC, Sirdeshmukh R (2014) Towards developing biomarkers for glioblastoma multiforme: a proteomics view. Expert Rev Proteomics 11:621–639. https://doi.org/10.1586/14789450.2014.939634

    Article  CAS  PubMed  Google Scholar 

  12. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507. https://doi.org/10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  13. Magaña-Maldonado R, Chávez-Cortez EG, Olascoaga-Arellano NK, López-Mejía M, Maldonado-Leal FM, Sotelo J, Pineda B (2016) Immunological evasion in glioblastoma. Biomed Res Int 2016:1–7. https://doi.org/10.1155/2016/7487313

    Article  CAS  Google Scholar 

  14. Hao C, Parney IF, Roa WH, Turner J, Petruk KC, Ramsay DA (2002) Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol 103:171–178. https://doi.org/10.1007/s004010100448

    Article  CAS  PubMed  Google Scholar 

  15. Van Meir E, Sawamura Y, Diserens a C, Hamou MF, de Tribolet N (1990) Human glioblastoma cells release interleukin 6 in vivo and in vitro. Cancer Res 50:6683–6688

    PubMed  Google Scholar 

  16. Murphy GM, Bitting L, Majewska A, Schmidt K, Song Y, Wood CR (1995) Expression of interleukin-11 and its encoding mRNA by glioblastoma cells. Neurosci Lett 196:153–156. https://doi.org/10.1016/0304-3940(95)11862-Q

    Article  CAS  PubMed  Google Scholar 

  17. Halfter H, Kremerskothen J, Weber J, Hacker-Klom U, Barnekow a REB, Stögbauer F (1998) Growth inhibition of newly established human glioma cell lines by leukemia inhibitory factor. J Neurooncol 39:1–18

    Article  CAS  Google Scholar 

  18. Halfter H, Lotfi R, Westermann R, Young P, Bernd Ringelstein E, Stögbauer FT (1998) Inhibition of growth and induction of differentiation of glioma cell lines by oncostatin M (OSM). Growth Factors 15:135–147. https://doi.org/10.3109/08977199809117189

    Article  CAS  PubMed  Google Scholar 

  19. Shweiki D, Neeman M, Itin A, Keshet E (1995) Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci U S A 92:768–772. https://doi.org/10.1073/pnas.92.3.768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reiss Y, Machein MR, Plate KH (2005) The role of angiopoietins during angiogenesis in gliomas. Brain Pathol 15:311–317. https://doi.org/10.1111/j.1750-3639.2005.tb00116.x

    Article  CAS  PubMed  Google Scholar 

  21. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103. https://doi.org/10.1038/nm1096-1096

    Article  CAS  PubMed  Google Scholar 

  22. Wilcock DM, Munireddy SK, Rosenthal A, Ugen KE, Gordon MN, Morgan D (2004) Microglial activation facilitates Aβ plaque removal following intracranial anti-Aβ antibody administration. Neurobiol Dis 15:11. https://doi.org/10.1016/j.nbd.2003.09.015

    Article  CAS  PubMed  Google Scholar 

  23. Chakrabarty P, Ceballos-Diaz C, Beccard A, Janus C, Dickson D, Golde TE, Das P (2010) IFN-γ promotes complement expression and attenuates amyloid plaque deposition in amyloid precursor protein transgenic mice. J Immunol 184:5333. https://doi.org/10.4049/jimmunol.0903382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chakrabarty P, Jansen-West K, Beccard A, Ceballos-Diaz C, Levites Y, Verbeeck C, Zubair AC, Dickson D, Golde TE, Das P (2010) Massive gliosis induced by interleukin-6 suppresses A deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J 24:548. https://doi.org/10.1096/fj.09-141754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, Prabhu SS, Rao G, Fuller GN, Aldape KD, Gumin J, Vence LM, Wistuba I, Rodriguez-Canales J, Villalobos PA, Dirven CMF, Tejada S, Valle RD, Alonso MM, Ewald B, Peterkin JJ, Tufaro F, Fueyo J (2018) Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 36:1419. https://doi.org/10.1200/JCO.2017.75.8219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Foreman PM, Friedman GK, Cassady KA, Markert JM (2017) Oncolytic virotherapy for the treatment of malignant glioma. Neurotherapeutics 14:333–344. https://doi.org/10.1007/s13311-017-0516-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kleijn A, Kloezeman J, Treffers-Westerlaken E, Fulci G, Leenstra S, Dirven C, Debets R, Lamfers M (2014) The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity. PLoS One 9:e97495. https://doi.org/10.1371/journal.pone.0097495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang H, Rivera-Molina Y, Gomez-Manzano C, Clise-Dwyer K, Bover L, Vence LM, Yuan Y, Lang FF, Toniatti C, Hossain MB, Fueyo J (2017) Oncolytic adenovirus and tumor-targeting immune modulatory therapy improve autologous cancer vaccination. Cancer Res 77:3894–3907. https://doi.org/10.1158/0008-5472.CAN-17-0468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nicola NA (1994) Cytokine pleiotropy and redundancy: a view from the receptor. Stem Cells 12(Suppl 1):3–12. discussion 12–14

    PubMed  Google Scholar 

  30. Macron C, Lane L, Núñez Galindo A, Dayon L (2018) Deep Dive on the proteome of human cerebrospinal fluid: a valuable data resource for biomarker discovery and missing protein identification. J Proteome Res 17:4113. https://doi.org/10.1021/acs.jproteome.8b00300

    Article  CAS  PubMed  Google Scholar 

  31. Salmiheimo ANE, Mustonen HK, Vainionpää SAA, Shen Z, Kemppainen EAJ, Seppänen HE, Puolakkainen PA (2016) Increasing the inflammatory competence of macrophages with IL-6 or with combination of IL-4 and LPS restrains the invasiveness of pancreatic cancer cells. J Cancer 7:42–49. https://doi.org/10.7150/jca.12923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maalouf SW, Theivakumar S, Owens DM (2012) Epidermal α6β4 integrin stimulates the influx of immunosuppressive cells during skin tumor promotion. J Dermatol Sci 66:108–118. https://doi.org/10.1016/j.jdermsci.2012.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schroeder GD, Markova DZ, Koerner JD, Rihn JA, Hilibrand AS, Vaccaro AR, Anderson DG, Kepler CK (2017) Are Modic changes associated with intervertebral disc cytokine profiles? Spine J 17:129–134. https://doi.org/10.1016/j.spinee.2016.08.006

    Article  PubMed  Google Scholar 

  34. Sylvester FA, Draghi A, Menoret A, Fernandez ML, Wang Z, Vella AT (2014) Distinctive colonic mucosal cytokine signature in new-onset, untreated pediatric crohn disease. J Pediatr Gastroenterol Nutr 59:553–561. https://doi.org/10.1097/MPG.0000000000000480

    Article  CAS  PubMed  Google Scholar 

  35. Goto M, Hayata K, Chiba J, Matsuura M, Iwaki-Egawa S, Watanabe Y (2015) Multiplex cytokine analysis of Werner syndrome. Intract Rare Dis Res 4:190–197. https://doi.org/10.5582/irdr.2015.01035

    Article  Google Scholar 

  36. González-Morales A, Zabaleta A, Guruceaga E, Alonso MM, García-Moure M, Fernández-Irigoyen J, Santamaría E (2018) Spatial and temporal proteome dynamics of glioma cells during oncolytic adenovirus Delta-24-RGD infection. Oncotarget 9:31045–31065. https://doi.org/10.18632/oncotarget.25774

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li J, Fang L, Meyer P, Killer HE, Flammer J, Neutzner A (2014) Anti-inflammatory response following uptake of apoptotic bodies by meningothelial cells. J Neuroinflammation 11:35. https://doi.org/10.1186/1742-2094-11-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kwon BK, Stammers AMT, Belanger LM, Bernardo A, Chan D, Bishop CM, Slobogean GP, Zhang H, Umedaly H, Giffin M, Street J, Boyd MC, Paquette SJ, Fisher CG, Dvorak MF (2010) Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma 27:669–682. https://doi.org/10.1089/neu.2009.1080

    Article  PubMed  Google Scholar 

  39. Hussein MH, Daoud GA, Kakita H, Hattori A, Murai H, Yasuda M, Mizuno K, Goto K, Ozaki Y, Ito T, Tanaka T, Fukuda S, Kato I, Fujimoto S, Suzuki S, Sobajima H, Togari H (2007) The sex differences of cerebrospinal fluid levels of interleukin 8 and antioxidants in asphyxiated newborns. Shock 28:154–159. https://doi.org/10.1097/shk.0b013e31803dcf55

    Article  CAS  PubMed  Google Scholar 

  40. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 9:731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Spanish Ministry of Economy and Competitiveness (MINECO) (Ref. SAF2014-59340-R), Department of Economic Development from Government of Navarra (Ref. PC023-PC024, PC025, PC081-82 and PI059), and Obra Social la Caixa to ES. AGM was supported by PEJ-2014-A-61949 (MINECO) and by a predoctoral fellowship from the Public University of Navarra (UPNA). MLM is also supported by a predoctoral fellowship from UPNA. The Proteomics Unit of Navarrabiomed is a member of Proteored, PRB3-ISCIII, and is supported by grant PT17/0019, of the PE I+D+i 2013-2016, funded by ISCIII and ERDF. This project is part of the HUPO Brain Proteome Project and is lined up with the Spanish Initiative on the Human Proteome Project (SpHPP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Santamaría .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

González-Morales, A., Lachén-Montes, M., Fernández-Irigoyen, J., Santamaría, E. (2019). Monitoring the Cerebrospinal Fluid Cytokine Profile Using Membrane-Based Antibody Arrays. In: Santamaría, E., Fernández-Irigoyen, J. (eds) Cerebrospinal Fluid (CSF) Proteomics. Methods in Molecular Biology, vol 2044. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9706-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9706-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9705-3

  • Online ISBN: 978-1-4939-9706-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics