Skip to main content

Two-Photon Neurotransmitter Uncaging for the Study of Dendritic Integration

  • Protocol
  • First Online:
Multiphoton Microscopy

Part of the book series: Neuromethods ((NM,volume 148))

Abstract

Neurons transform the information arising from up to thousands of synaptic inputs into specific spiking patterns. Nonlinear dendritic integration is a crucial step in this process and is thought to increase the computational ability of neurons. However, studying how complex spatiotemporal patterns of synaptic inputs drive neuronal spiking is technically challenging. Two-photon neurotransmitter uncaging allows researchers to activate sequences of single synapses with high spatiotemporal precision and thus systematically examine how single and multiple synaptic activation patterns may recruit dendritic nonlinearities. Here, we describe the theoretical and practical considerations of using two-photon uncaging to mimic synaptic activation and monitor the electrical and biochemical signaling in dendrites when evoked by various synaptic patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Glut]:

Glutamate concentration

2PLSM:

Two-photon laser scanning microscopy

ACSF:

Artificial cerebrospinal fluid

AMPAR:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

AOD:

Acousto-optic deflector

AOM:

Acousto-optic modulator

CDNI-glutamate:

4-Carboxymethoxy-5,7-Dinitroindolinyl-Glutamate

dI/O:

Dendritic input/output relationship

DiO/DPA:

Two-component optical voltage sensor made of the neuronal tracer dye DiOC16(3) and dipicrylamine

DNI-glutamate TFA:

4-Methoxy-5,7-dinitroindolinyl-L-glutamate trifluoroacetate

GM:

The molecular two-photon cross-section is usually quoted in the units of Göppert-Mayer (GM), where 1 GM is 10−50 cm4 s photon−1

I/O:

Input/output relationship

MNI-Glutamate:

4-Methoxy-7-nitroindolinyl-caged-L-glutamate

NMDAR:

N-Methyl-D-aspartate receptor

PSF:

Point spread function

PV:

Parvalbumin

SLM:

Spatial light modulator

u[Glut]:

Uncaging-evoked glutamate transient

uEPSC:

Uncaging-evoked EPSC

uEPSP:

Uncaging-evoked EPSP

VGCC:

Voltage-gated calcium channel

θ B :

Bragg angle, the angle between the incident laser beam into an AOM and the diffracted beam

References

  1. Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30:1138–1168

    Article  CAS  PubMed  Google Scholar 

  2. Magee JC, Johnston D (1995) Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487:67–90. https://doi.org/10.1113/jphysiol.1995.sp020862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72. https://doi.org/10.1038/367069a0

    Article  CAS  PubMed  Google Scholar 

  4. Williams SR, Mitchell SJ (2008) Direct measurement of somatic voltage clamp errors in central neurons. Nat Neurosci 11:790–798. https://doi.org/10.1038/nn.2137

    Article  CAS  PubMed  Google Scholar 

  5. Corrie JET (2005) Photoremovable protecting groups used for the caging of biomolecules. Dyn Stud Biol 1999:1–94

    Google Scholar 

  6. Lester HA, Nerbonne JM (1982) Physiological and pharmacological manipulations with light flashes. Annu Rev Biophys Bioeng 11:151–175. https://doi.org/10.1146/annurev.bb.11.060182.001055

    Article  CAS  PubMed  Google Scholar 

  7. Sarkisov DV, Wang SS-H (2007) Combining uncaging techniques with patch-clamp recording and optical physiology. In: Walz W (ed) Neuromethods, Patch-Clamp analysis, vol 38, 2nd edn. Humana Press, Totowa, NJ, pp 149–168. https://doi.org/10.1007/978-1-59745-492-6_5

    Chapter  Google Scholar 

  8. Palma-Cerda F, Auger C, Crawford DJ et al (2012) New caged neurotransmitter analogs selective for glutamate receptor sub-types based on methoxynitroindoline and nitrophenylethoxycarbonyl caging groups. Neuropharmacology 63:624–634. https://doi.org/10.1016/j.neuropharm.2012.05.010

    Article  CAS  PubMed  Google Scholar 

  9. Fino E, Araya R, Peterka DS et al (2009) RuBi-Glutamate: two-photon and visible-light photoactivation of neurons and dendritic spines. Front Neural Circuits 3:1–9. https://doi.org/10.3389/neuro.04.002.2009

  10. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377. https://doi.org/10.1038/nbt899

    Article  CAS  PubMed  Google Scholar 

  11. Trigo FF, Corrie JET, Ogden D (2009) Laser photolysis of caged compounds at 405 nm: photochemical advantages, localisation, phototoxicity and methods for calibration. J Neurosci Meth 180:9–21. https://doi.org/10.1016/j.jneumeth.2009.01.032

  12. Carter AG, Sabatini BL (2004) State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44:483–493. https://doi.org/10.1016/j.neuron.2004.10.013

    Article  CAS  PubMed  Google Scholar 

  13. Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50:291–307. https://doi.org/10.1016/j.neuron.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  14. Branco T, Häusser M (2011) Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69:885–892. https://doi.org/10.1016/j.neuron.2011.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tran-Van-Minh A, Abrahamsson T, Cathala L, DiGregorio DA (2016) Differential dendritic integration of synaptic potentials and calcium in cerebellar interneurons. Neuron 91:837–850. https://doi.org/10.1016/j.neuron.2016.07.029

    Article  CAS  PubMed  Google Scholar 

  16. Salierno M, Marceca E, Peterka DS et al (2010) A fast ruthenium polypyridine cage complex photoreleases glutamate with visible or IR light in one and two photon regimes. J Inorg Biochem 104:418–422. https://doi.org/10.1016/j.jinorgbio.2009.12.004

    Article  CAS  PubMed  Google Scholar 

  17. Ellis-Davies GCR, Matsuzaki M, Paukert M et al (2007) 4-Carboxymethoxy-5,7-Dinitroindolinyl-Glu: an improved caged glutamate for expeditious ultraviolet and two-photon photolysis in brain slices. J Neurosci 27:6601–6604. https://doi.org/10.1523/JNEUROSCI.1519-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chiovini B, Turi GF, Katona G et al (2014) Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves. Neuron 82:908–924. https://doi.org/10.1016/j.neuron.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  19. Gasparini S, Magee JC (2006) State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J Neurosci 26:2088–2100. https://doi.org/10.1523/JNEUROSCI.4428-05.2006

  20. Fernandez-Alfonso T, Nadella KMNS, Iacaruso MF et al (2014) Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope. J Neurosci Meth 222:69–81. https://doi.org/10.1016/j.jneumeth.2013.10.021

  21. Katona G, Szalay G, Maák P et al (2012) Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat Methods 9:201–208. https://doi.org/10.1038/nmeth.1851

    Article  CAS  PubMed  Google Scholar 

  22. Lutz C, Otis TS, DeSars V et al (2008) Holographic photolysis of caged neurotransmitters. Nat Methods 5:821–827. https://doi.org/10.1038/nmeth.1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hernandez O, Papagiakoumou E, Tanese D et al (2016) Three-dimensional spatiotemporal focusing of holographic patterns. Nat Commun 7:12716. https://doi.org/10.1038/ncomms12716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anselmi F, Ventalon C, Begue A et al (2011) Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning. Proc Natl Acad Sci USA 108:19504–19509. https://doi.org/10.1073/pnas.1109111108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bovetti S, Fellin T (2015) Optical dissection of brain circuits with patterned illumination through the phase modulation of light. J Neurosci Meth 241:66–77. https://doi.org/10.1016/j.jneumeth.2014.12.002

  26. Smirnov MS, Evans PR, Garrett TR et al (2017) Automated remote focusing, drift correction, and photostimulation to evaluate structural plasticity in dendritic spines. PLoS One 12:1–14. https://doi.org/10.1371/journal.pone.0170586

    Article  CAS  Google Scholar 

  27. Matsuzaki M, Ellis-Davies GC, Nemoto T et al (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092. https://doi.org/10.1038/nn736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jonas P (2000) The time course of signaling at central glutamatergic synapses. News Physiol Sci 15:83–89. https://doi.org/10.1113/jphysiol.1992.sp019417

    Article  CAS  PubMed  Google Scholar 

  29. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  30. Nielsen TA, DiGregorio DA, Silver RA (2004) Modulation of glutamate mobility reveals the mechanism underlying slow-rising AMPAR EPSCs and the diffusion coefficient in the synaptic cleft. Neuron 42:757–771. https://doi.org/10.1016/j.neuron.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  31. DiGregorio DA, Rothman JS, Nielsen TA, Silver RA (2007) Desensitization properties of AMPA receptors at the cerebellar mossy fiber granule cell synapse. J Neurosci 27:8344–8357. https://doi.org/10.1523/JNEUROSCI.2399-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kiskin NI, Chillingworth R, McCray JA et al (2002) The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals. Eur Biophys J 30:588–604. https://doi.org/10.1007/s00249-001-0187-x

    Article  CAS  PubMed  Google Scholar 

  33. Koester HJ, Baur D, Uhl R, Hell SW (1999) Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. Biophys J 77:2226–2236. https://doi.org/10.1016/S0006-3495(99)77063-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Axelrod D, Koppel DE, Schlessinger J et al (1976) Mobility measurement by analysis of fluorescence recovery kinetics. Biophys J 16:1055–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kiskin NI, Ogden D (2002) Two-photon excitation and photolysis by pulsed laser illumination modelled by spatially non-uniform reactions with simultaneous diffusion. Eur Biophys J 30:571–587. https://doi.org/10.1007/s00249-001-0186-y

    Article  CAS  PubMed  Google Scholar 

  36. McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2:11–23. https://doi.org/10.1038/35049047

    Article  CAS  PubMed  Google Scholar 

  37. Nevian T, Larkum ME, Polsky A, Schiller J (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10:206–214. https://doi.org/10.1038/nn1826

    Article  CAS  PubMed  Google Scholar 

  38. Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3:895–903

    Article  CAS  PubMed  Google Scholar 

  39. Smith MA, Ellis-Davies GCR, Magee JC (2003) Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. J Physiol 548:245–258. https://doi.org/10.1113/jphysiol.2002.036376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Geiger JRP, Lübke J, Roth A et al (1997) Submillisecond AMPA receptor-mediated signalling at a principal neuron-interneuron synapse. Neuron 18:1009–1023

    Article  CAS  PubMed  Google Scholar 

  41. Cane M, Maco B, Knott G, Holtmaat A (2014) The relationship between PSD-95 clustering and spine stability in vivo. J Neurosci 34:2075–2086. https://doi.org/10.1523/JNEUROSCI.3353-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abrahamsson T, Cathala L, Matsui K et al (2012) Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity. Neuron 73:1159–1172. https://doi.org/10.1016/j.neuron.2012.01.027

    Article  CAS  PubMed  Google Scholar 

  43. Fortin DA, Tillo SE, Yang G et al (2014) Live imaging of endogenous PSD-95 using ENABLED: a conditional strategy to fluorescently label endogenous proteins. J Neurosci 34:16698–16712. https://doi.org/10.1523/JNEUROSCI.3888-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tønnesen J, Katona G, Rózsa B, Nägerl UV (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685. https://doi.org/10.1038/nn.3682

    Article  CAS  PubMed  Google Scholar 

  45. Popovic MA, Carnevale N, Rozsa B, Zecevic D (2015) Electrical behaviour of dendritic spines as revealed by voltage imaging. Nat Commun 6:8436. https://doi.org/10.1038/ncomms9436

    Article  CAS  PubMed  Google Scholar 

  46. Acker CD, Hoyos E, Loew LM (2016) EPSPs measured in proximal dendritic spines of cortical pyramidal neurons. eNeuro 3:1–13. https://doi.org/10.1523/ENEURO.0050-15.2016

    Article  Google Scholar 

  47. Bradley J, Luo R, Otis TS, DiGregorio DA (2009) Submillisecond optical reporting of membrane potential in situ using a neuronal tracer dye. J Neurosci 29:9197–9209. https://doi.org/10.1523/JNEUROSCI.1240-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fink AE, Bender KJ, Trussell LO et al (2012) Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor. PLoS One 7. https://doi.org/10.1371/journal.pone.0041434

  49. Palmer LM, Stuart GJ (2009) Membrane potential changes in dendritic spines during action potentials and synaptic input. J Neurosci 29:6897–6903. https://doi.org/10.1523/JNEUROSCI.5847-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71:512–528. https://doi.org/10.1016/j.neuron.2011.05.043

    Article  CAS  PubMed  Google Scholar 

  51. Poirazi P, Brannon T, Mel BW (2003) Pyramidal neuron as two-layer neural network. Neuron 37:989–999. https://doi.org/10.1016/S0896-6273(03)00149-1

    Article  CAS  PubMed  Google Scholar 

  52. Hu H, Martina M, Jonas P (2010) Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science 327:52–58. https://doi.org/10.1126/science.1177876

    Article  CAS  PubMed  Google Scholar 

  53. Branco T, Clark BA, Häusser M (2010) Dendritic discrimination of temporal input sequences in cortical neurons. Science 329:1671–1675. https://doi.org/10.1126/science.1189664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Agmon-Snir H, Carr CE, Rinzel J (1998) The role of dendrites in auditory coincidence detection. Nature 393:268–272. https://doi.org/10.1038/30505

    Article  CAS  PubMed  Google Scholar 

  55. Mel BW, Ruderman DL, Archie KA (1998) Translation-invariant orientation tuning in visual “complex” cells could derive from intradendritic computations. J Neurosci 18:4325–4334. https://doi.org/10.1098/rspb.1986.0060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Losonczy A, Makara JK, Magee JC (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452:436–441. https://doi.org/10.1038/nature06725

    Article  CAS  PubMed  Google Scholar 

  57. Xu N, Harnett MT, Williams SR et al (2012) Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492:247–251. https://doi.org/10.1038/nature11601

    Article  CAS  PubMed  Google Scholar 

  58. Schmidt-Hieber C, Toleikyte G, Aitchison L et al (2017) Active dendritic integration as a mechanism for robust and precise grid cell firing. Nat Neurosci 20:1114–1121. https://doi.org/10.1038/nn.4582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wilson DE, Whitney DE, Scholl B, Fitzpatrick D (2016) Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nat Neurosci 19:1003–1009. https://doi.org/10.1038/nn.4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scholl B, Wilson DE, Fitzpatrick D (2017) Local order within global disorder: synaptic architecture of visual space. Neuron 96:1127–1138. https://doi.org/10.1016/j.neuron.2017.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Soler-Llavina GJ, Sabatini BL (2006) Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat Neurosci 9:798–806. https://doi.org/10.1038/nn1698

    Article  CAS  PubMed  Google Scholar 

  62. Weber JP, Andrásfalvy BK, Polito M et al (2016) Location-dependent synaptic plasticity rules by dendritic spine cooperativity. Nat Commun 7:11380. https://doi.org/10.1038/ncomms11380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Silver RA (2010) Neuronal arithmetic. Nat Rev Neurosci 11:474–489. https://doi.org/10.1038/nrn2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tran-Van-Minh A, Cazé RD, Abrahamsson T et al (2015) Contribution of sublinear and supralinear dendritic integration to neuronal computations. Front Cell Neurosci 9:1–15. https://doi.org/10.3389/fncel.2015.00067

    Article  CAS  Google Scholar 

  65. Higley MJ, Soler-Llavina GJ, Sabatini BL (2009) Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration. Nat Neurosci 12:1121–1128. https://doi.org/10.1038/nn.2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. DiGregorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tran-Van-Minh, A., Rebola, N., Hoehne, A., DiGregorio, D.A. (2019). Two-Photon Neurotransmitter Uncaging for the Study of Dendritic Integration. In: Hartveit, E. (eds) Multiphoton Microscopy. Neuromethods, vol 148. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9702-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9702-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9701-5

  • Online ISBN: 978-1-4939-9702-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics