Skip to main content

Challenges and Solutions for Purification of ADAMTS Proteases: An Overview

  • Protocol
  • First Online:
ADAMTS Proteases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2043))

Abstract

ADAMTS are secreted metalloproteinases implicated in many key biological processes. The 19 different members of this family share an identical domain composition at the level of their amino-terminal portion, whereas the identity and number of the domains forming their carboxy-terminal half are divergent and define distinct ADAMTS subfamilies. Due to their large size, extensive glycosylation, the presence of specific domains, their tendency to form aggregates, their relatively low abundance in tissues and the presence of many disulfide bonds, ADAMTS are very hard to isolate, express, and purify, as either native or recombinant active enzymes. This chapter provides an overview of critical steps to take into account when obtaining these proteases for biochemical and functional investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apte SS, Parks WC (2015) Metalloproteinases: a parade of functions in matrix biology and an outlook for the future. Matrix Biol 44–46:1–6. https://doi.org/10.1016/j.matbio.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  2. Kelwick R, Desanlis I, Wheeler GN, Edwards DR (2015) The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 16:113. https://doi.org/10.1186/s13059-015-0676-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dubail J, Apte SS (2015) Insights on ADAMTS proteases and ADAMTS-like proteins from mammalian genetics. Matrix Biol 44–46:24–37. https://doi.org/10.1016/j.matbio.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  4. Flannery CR, Zeng W, Corcoran C, Collins-Racie LA, Chockalingam PS, Hebert T, Mackie SA, McDonagh T, Crawford TK, Tomkinson KN, LaVallie ER, Morris EA (2002) Autocatalytic cleavage of ADAMTS-4 (Aggrecanase-1) reveals multiple glycosamino-glycan-binding sites. J Biol Chem 277(45):42775–42780

    Article  CAS  PubMed  Google Scholar 

  5. Rao N, Ke Z, Liu H, Ho CJ, Kumar S, Xiang W, Zhu Y, Ge R (2013) ADAMTS4 and its proteolytic fragments differentially affect melanoma growth and angiogenesis in mice. Int J Cancer 133(2):294–306. https://doi.org/10.1002/ijc.28037

    Article  CAS  PubMed  Google Scholar 

  6. Colige A, Vandenberghe I, Thiry M, Lambert CA, Van Beeumen J, Li SW, Prockop DJ, Lapiere CM, Nusgens BV (2002) Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J Biol Chem 277(8):5756–5766

    Article  CAS  PubMed  Google Scholar 

  7. Bekhouche M, Colige A (2015) The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology. Matrix Biol 44–46:46–53. https://doi.org/10.1016/j.matbio.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  8. Colige A, Ruggiero F, Vandenberghe I, Dubail J, Kesteloot F, Van Beeumen J, Beschin A, Brys L, Lapière CM, Nusgens B (2005) Domains and maturation processes that regulate the activity of ADAMTS-2, a metalloproteinase cleaving the aminopropeptide of fibrillar procollagens types I-III and V. J Biol Chem 280(41):34397–34408

    Article  CAS  PubMed  Google Scholar 

  9. Bekhouche M, Leduc C, Dupont L, Janssen L, Delolme F, Vadon-Le Goff S, Smargiasso N, Baiwir D, Mazzucchelli G, Zanella-Cleon I, Dubail J, De Pauw E, Nusgens B, Hulmes DJ, Moali C, Colige A (2016) Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-β signaling as primary targets. FASEB J 30(5):1741–1756. https://doi.org/10.1096/fj.15-279869

    Article  CAS  PubMed  Google Scholar 

  10. Janssen L, Dupont L, Bekhouche M, Noel A, Leduc C, Voz M, Peers B, Cataldo D, Apte SS, Dubail J, Colige A (2016) ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis. Angiogenesis 19(1):53–65. https://doi.org/10.1007/s10456-015-9488-z

    Article  CAS  PubMed  Google Scholar 

  11. Brouillard P, Dupont L, Helaers R, Coulie R, Tiller GE, Peeden J, Colige A, Vikkula M (2017) Loss of ADAMTS3 activity causes Hennekam lymphangiectasia-lymphedema syndrome 3. Hum Mol Genet 26(21):4095–4104

    Article  CAS  PubMed  Google Scholar 

  12. Bourhis JM, Vadon-Le Goff S, Afrache H, Mariano N, Kronenberg D, Thielens N, Moali C, Hulmes DJ (2013) Procollagen C-proteinase enhancer grasps the stalk of the C-propeptide trimer to boost collagen precursor maturation. Proc Natl Acad Sci U S A 110(16):6394–6399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppänen VM, Holopainen T, Kivelä R, Ortega S, Kärpanen T, Alitalo K (2014) CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 129(19):1962–1971

    Article  CAS  PubMed  Google Scholar 

  14. Lee NV, Rodriguez-Manzaneque JC, Thai SN-M, Twal WO, Luque A, Lyons KM, Argraves WS, Iruela-Arispe ML (2005) Fibulin-1 acts as a cofactor for the matrix metalloprotease ADAMTS-1. J Biol Chem 280(41):34796–34804. https://doi.org/10.1074/jbc.M506980200

    Article  CAS  PubMed  Google Scholar 

  15. McCulloch DR, Nelson CM, Dixon LJ, Silver DL, Wylie JD, Lindner V, Sasaki T, Cooley MA, Argraves WS, Apte SS (2009) ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression. Dev Cell 17:687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doucet A, Kleifeld O, Kizhakkedathu JN, Overall CM (2011) Identification of proteolytic products and natural protein N-termini by terminal amine isotopic labeling of substrates (TAILS). Methods Mol Biol 753:273–287. https://doi.org/10.1007/978-1-61779-148-2_18

    Article  CAS  PubMed  Google Scholar 

  17. Kleifeld O, Doucet A, auf dem Keller U, Prudova A, Schilling O, Kainthan RK, Starr AE, Foster LJ, Kizhakkedathu JN, Overall CM (2010) Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat Biotechnol 28(3):281–288. https://doi.org/10.1038/nbt.1611

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain C. Colige .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Colige, A.C. (2020). Challenges and Solutions for Purification of ADAMTS Proteases: An Overview. In: Apte, S. (eds) ADAMTS Proteases. Methods in Molecular Biology, vol 2043. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9698-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9698-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9697-1

  • Online ISBN: 978-1-4939-9698-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics