Skip to main content

Visualization of Perineuronal Nets in Central Nervous System Tissue Sections

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2043))

Abstract

The perineuronal net (PNN) is a specialized extracellular matrix structure that surrounds subpopulations of neurons in the central nervous system (CNS). The appearance of PNNs on the cell surface marks the closure of the critical period during development and has been observed to reduce synaptic plasticity. Perineuronal nets comprise hyaluronan, chondroitin sulfate proteoglycans (CSPGs), link proteins, tenascin-R, and other components, some of which are substrates for a disintegrin-like and metalloprotease domain with thrombospondin type 1 motifs (ADAMTS) proteases. There is a high heterogeneity of PNNs in the CNS. Depending on which part of the CNS is studied, the PNNs may be observed surrounding the soma, or both the soma and proximal dendrites. The most robust marker for PNN is a lectin called Wisteria floribunda agglutinin. Here, we describe a method for preparing tissue for visualization of PNNs in CNS.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wang D, Fawcett J (2012) The perineuronal net and the control of CNS plasticity. Cell Tissue Res 349(1):147–160

    Article  PubMed  Google Scholar 

  2. van’t Spijker HM, Kwok JCF (2017) A sweet talk: the molecular systems of perineuronal nets in controlling neuronal communication. Front Integr Neurosci 11:33

    Article  Google Scholar 

  3. Kwok JC et al (2011) Extracellular matrix and perineuronal nets in CNS repair. Dev Neurobiol 71(11):1073–1089

    Article  CAS  PubMed  Google Scholar 

  4. Matsumoto K et al (2003) Distinct interaction of versican/PG-M with hyaluronan and link protein. J Biol Chem 278(42):41205–41212

    Article  CAS  PubMed  Google Scholar 

  5. Binette F et al (1994) Link protein is ubiquitously expressed in non-cartilaginous tissues where it enhances and stabilizes the interaction of proteoglycans with hyaluronic acid. J Biol Chem 269(29):19116–19122

    CAS  PubMed  Google Scholar 

  6. Lundell A et al (2004) Structural basis for interactions between tenascins and lectican C-type lectin domains: evidence for a crosslinking role for tenascins. Structure 12(8):1495–1506

    Article  CAS  PubMed  Google Scholar 

  7. Enwright JF et al (2016) Reduced labeling of parvalbumin neurons and perineuronal nets in the dorsolateral prefrontal cortex of subjects with schizophrenia. Neuropsychopharmacology 41:2206

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pantazopoulos H et al (2010) Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch Gen Psychiatry 67(2):155–166

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pantazopoulos H et al (2015) Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. Transl Psychiatry 5(1):e496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang S et al (2015) Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology. Exp Neurol 265:48–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morawski M et al (2004) Perineuronal nets potentially protect against oxidative stress. Exp Neurol 188(2):309–315

    Article  CAS  PubMed  Google Scholar 

  12. Morawski M et al (2012) Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer’s disease neuropathology. Brain Pathol 22(4):547–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rankin-Gee EK et al (2015) Perineuronal net degradation in epilepsy. Epilepsia 56(7):1124–1133

    Article  CAS  PubMed  Google Scholar 

  14. McRae PA et al (2012) Persistent decrease in multiple components of the perineuronal net following status epilepticus. Eur J Neurosci 36(11):3471–3482

    Article  PubMed  PubMed Central  Google Scholar 

  15. Slaker M et al (2015) Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory. J Neurosci 35(10):4190–4202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xue YX et al (2014) Depletion of perineuronal nets in the amygdala to enhance the erasure of drug memories. J Neurosci 34(19):6647–6658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Romberg C et al (2013) Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex. J Neurosci 33(16):7057–7065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Banerjee SB et al (2017) perineuronal nets in the adult sensory cortex are necessary for fear learning. Neuron 95(1):169–179.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsien RY (2013) Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc Natl Acad Sci U S A 110(30):12456–12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pizzorusso T et al (2006) Structural and functional recovery from early monocular deprivation in adult rats. Proc Natl Acad Sci U S A 103(22):8517–8522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pizzorusso T et al (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298(5596):1248–1251

    Article  CAS  PubMed  Google Scholar 

  22. Carulli D et al (2010) Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133(Pt 8):2331–2347

    Article  PubMed  Google Scholar 

  23. Galtrey CM et al (2007) Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair. Brain 130(Pt 4):926–939

    Article  PubMed  Google Scholar 

  24. Massey JM et al (2006) Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J Neurosci 26(16):4406–4414

    Article  CAS  PubMed  Google Scholar 

  25. Balmer TS (2016) perineuronal nets enhance the excitability of fast-spiking neurons. eNeuro 3(4). https://doi.org/10.1523/ENEURO.0112-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morris NP, Henderson Z (2000) Perineuronal nets ensheath fast spiking, parvalbumin-immunoreactive neurons in the medial septum/diagonal band complex. Eur J Neurosci 12(3):828–838

    Article  CAS  PubMed  Google Scholar 

  27. Brückner G et al (1993) Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 8(3):183–200

    Article  PubMed  Google Scholar 

  28. Frischknecht R et al (2009) Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci 12(7):897–904

    Article  CAS  PubMed  Google Scholar 

  29. Beurdeley M et al (2012) Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci 32(27):9429–9437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dick G et al (2013) Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains. J Biol Chem 288(38):27384–27395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vo T et al (2013) The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Mol Cell Neurosci 56:186–200

    Article  CAS  PubMed  Google Scholar 

  32. Suttkus A et al (2016) The neuronal extracellular matrix restricts distribution and internalization of aggregated Tau-protein. Neuroscience 313:225–235

    Article  CAS  PubMed  Google Scholar 

  33. Miyata S, Nishimura Y, Nakashima T (2007) Perineuronal nets protect against amyloid beta-protein neurotoxicity in cultured cortical neurons. Brain Res 1150:200–206

    Article  CAS  PubMed  Google Scholar 

  34. Suttkus A et al (2014) Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. Cell Death Dis 5:e1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cabungcal J-H et al (2013) Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci 110(22):9130–9135

    Article  CAS  PubMed  Google Scholar 

  36. Suttkus A et al (2012) Neuroprotection against iron-induced cell death by perineuronal nets - an in vivo analysis of oxidative stress. Am J Neurodegener Dis 1(2):122–129

    PubMed  PubMed Central  Google Scholar 

  37. Lorenzo Bozzelli P et al (2018) Proteolytic remodeling of perineuronal nets: effects on synaptic plasticity and neuronal population dynamics. Neural Plast 2018:5735789

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kwok JCF, Carulli D, Fawcett JW (2010) In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J Neurochem 114(5):1447–1459

    CAS  PubMed  Google Scholar 

  39. Rossier J et al (2015) Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin. Mol Psychiatry 20:154

    Article  CAS  PubMed  Google Scholar 

  40. Levy C et al (2015) Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex. J Comp Neurol 523(4):629–648

    Article  CAS  Google Scholar 

  41. Slaker ML, Harkness JH, Sorg BA (2016) A standardized and automated method of perineuronal net analysis using Wisteria floribunda agglutinin staining intensity. IBRO Rep 1:54–60

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kupai K et al (2010) Matrix metalloproteinase activity assays: importance of zymography. J Pharmacol Toxicol Methods 61(2):205–209

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica C. F. Kwok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Souter, L., Kwok, J.C.F. (2020). Visualization of Perineuronal Nets in Central Nervous System Tissue Sections. In: Apte, S. (eds) ADAMTS Proteases. Methods in Molecular Biology, vol 2043. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9698-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9698-8_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9697-1

  • Online ISBN: 978-1-4939-9698-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics