Skip to main content

Inhibition of ADAMTS1 Expression by Lentiviral CRISPR/Cas9 Gene Editing Technology

  • Protocol
  • First Online:
ADAMTS Proteases

Abstract

The continuous improvement of gene editing tools has allowed a major revolution in biological sciences. Although a variety of gain and loss-of-function approaches have been widely used for the last decades, some limitations arose from non-specific targeting or lack of complete inhibition of the gene of interest. CRISPR/Cas9 editing technology introduced new and significant advantages because it can directly modify the gene of interest and completely blocks its expression.

In the context of cancer studies, the heterogeneity of the tumor microenvironment requires comprehensive approaches to unveil the contribution of multiple genes. For example, a deeper understanding of the biology of proteases such as ADAMTS (a disintegrin and metalloproteinase with thrombospondin type 1 motifs) will improve our perspective of complex phenomena affected by extracellular matrix remodeling, including embryonic development, angiogenesis, immune infiltration, metastasis, and tumor plasticity. Here, we present a method using CRISPR/Cas9 technology to inhibit the expression of the representative ADAMTS1 in cancer cells. Following the first steps of gene edition, we pursue further selection of silenced cells and provide a detailed description of sequence analysis and validation assays. This method leads to inactivation of ADAMTS1 in cancer cells, providing a relevant biological tool that will allow subsequent in vivo and in vitro ADAMTS1 functional analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall B, Limaye A, Kulkarni AB (2009) Overview: generation of gene knockout mice. In: Current Protocols in Cell Biology. Wiley, Hoboken, NJ, pp 19.12.1–19.12.17

    Google Scholar 

  2. Grimm D (2006) MOUSE GENETICS: a mouse for every gene. Science 312:1862–1866. https://doi.org/10.1126/science.312.5782.1862

    Article  CAS  PubMed  Google Scholar 

  3. Kim J-S (2016) Genome editing comes of age. Nat Protoc 11:1573–1578. https://doi.org/10.1038/nprot.2016.104

    Article  CAS  PubMed  Google Scholar 

  4. Sakuma T, Yamamoto T (2015) CRISPR/Cas9: the leading edge of genome editing technology. In: Target. Genome Ed. Using site-specific nucleases. Springer, Tokyo, pp 25–41

    Google Scholar 

  5. Ochiai H, Yamamoto T (2015) Genome editing using zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). In: Target. Genome Ed. Using site-specific nucleases. Springer, Tokyo, pp 3–24

    Google Scholar 

  6. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799. https://doi.org/10.1038/nrd2092

    Article  CAS  PubMed  Google Scholar 

  7. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:a005058. https://doi.org/10.1101/cshperspect.a005058

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bix G, Iozzo RV (2005) Matrix revolutions: “tails” of basement-membrane components with angiostatic functions. Trends Cell Biol 15:52–60. https://doi.org/10.1016/j.tcb.2004.11.008

    Article  CAS  PubMed  Google Scholar 

  9. Kuno K, Kanada N, Nakashima E et al (1997) Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J Biol Chem 272:556–562. https://doi.org/10.1074/jbc.272.1.556

    Article  CAS  PubMed  Google Scholar 

  10. Vázquez F, Hastings G, Ortega MA et al (1999) METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J Biol Chem 274:23349–23357. https://doi.org/10.1074/jbc.274.33.23349

    Article  PubMed  Google Scholar 

  11. Rodríguez-Manzaneque JC, Fernández-Rodríguez R, Rodríguez-Baena FJ, Iruela-Arispe ML (2015) ADAMTS proteases in vascular biology. Matrix Biol 44–46:38–45. https://doi.org/10.1016/j.matbio.2015.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cal S, López-Otín C (2015) ADAMTS proteases and cancer. Matrix Biol 44–46:77–85. https://doi.org/10.1016/j.matbio.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  13. Apte SS (2009) A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol Chem 284:31493–31497. https://doi.org/10.1074/jbc.R109.052340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mittaz L, Russell DL, Wilson T et al (2004) Adamts-1 is essential for the development and function of the urogenital system. Biol Reprod 70:1096–1105. https://doi.org/10.1095/biolreprod.103.023911

    Article  CAS  PubMed  Google Scholar 

  15. Shindo T, Kurihara H, Kuno K et al (2000) ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function. J Clin Invest 105:1345–1352. https://doi.org/10.1172/JCI8635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fernández-Rodríguez R, Rodríguez-Baena FJ, Martino-Echarri E et al (2016) Stroma-derived but not tumor ADAMTS1 is a main driver of tumor growth and metastasis. Oncotarget 7:34507–34519. https://doi.org/10.18632/oncotarget.8922

    Article  PubMed  PubMed Central  Google Scholar 

  17. Casal C, Torres-Collado AX, Plaza-Calonge MCDC et al (2010) ADAMTS1 contributes to the acquisition of an endothelial-like phenotype in plastic tumor cells. Cancer Res 70:4676–4686. https://doi.org/10.1158/0008-5472.CAN-09-4197

    Article  CAS  PubMed  Google Scholar 

  18. Rodríguez-Manzaneque JC, Milchanowski AB, Dufour EK et al (2000) Characterization of METH-1/ADAMTS1 processing reveals two distinct active forms. J Biol Chem 275:33471–33479. https://doi.org/10.1074/jbc.M002599200

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory has been supported by grants from the Ministerio de Economía y Competitividad and Instituto de Salud Carlos III from Spain, co-financed by FEDER (PI16/00345 to JCRM). OS is supported by a scholarship from Doctoral and Post-doctoral Program, National Secretary of Science and Technology of Panama (#270-2015-011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Rodríguez-Manzaneque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peris-Torres, C., Serrano, O., Plaza-Calonge, M.d.C., Rodríguez-Manzaneque, J.C. (2020). Inhibition of ADAMTS1 Expression by Lentiviral CRISPR/Cas9 Gene Editing Technology. In: Apte, S. (eds) ADAMTS Proteases. Methods in Molecular Biology, vol 2043. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9698-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9698-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9697-1

  • Online ISBN: 978-1-4939-9698-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics