Skip to main content

Mutagenesis of Chlamydia trachomatis Using TargeTron

  • Protocol
  • First Online:
Chlamydia trachomatis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2042))

Abstract

Chlamydia trachomatis is an important human pathogen that prior to 2011 was largely intractable to genetic manipulation. Here we describe the application of a group II intron, referred to as TargeTron, for site-specific insertional inactivation of target genetic loci in the obligate, intracellular bacteria C. trachomatis. In this chapter, we outline the methods for intron retargeting, chlamydia transformation, and mutant verification. We also outline a method for complementation of TargeTron mutants. Furthermore, we discuss potential pitfalls and alternative strategies for generating mutants with TargeTron technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schachter J (1999) Infection and disease epidemiology, in chlamydia; intracellular biology, pathogenesis, and immunity. ASM Press, Washington, DC

    Google Scholar 

  2. Malhotra M, Sood S, Mukherjee A et al (2013) Genital Chlamydia trachomatis: an update. Indian J Med Res 138:303–316

    PubMed  PubMed Central  Google Scholar 

  3. Hu VH, Holland MJ, Burton MJ (2013) Trachoma: protective and pathogenic ocular immune responses to Chlamydia trachomatis. PLoS Negl Trop Dis 7(2):e2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Kahane S, Cutcliffe LT et al (2011) Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector. PLoS Pathog 7(9):e1002258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shima K, Wanker M, Skilton RJ et al (2018) The genetic transformation of Chlamydia pneumoniae. mSphere 3:1–16

    Article  Google Scholar 

  6. Kari L, Goheen MM, Randall LB et al (2011) Generation of targeted Chlamydia trachomatis null mutants. Proc Natl Acad Sci 108:7189–7193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kokes M, Dunn JD, Granek JA et al (2015) Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia. Cell Host Microbe 17:716–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weber MM, Bauler LD, Lam J, Hackstadt T (2015) Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis. Infect Immun 83:4710–4718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bauler LD, Hackstadt T (2014) Expression and targeting of secreted proteins from Chlamydia trachomatis. J Bacteriol 196:1325–1334

    Article  PubMed  PubMed Central  Google Scholar 

  10. Agaisse H, Derré I (2013) A C. trachomatis cloning vector and the generation of C. trachomatis strains expressing fluorescent proteins under the control of a C. trachomatis promoter. PLoS One 8(2):e57090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson CM, Fisher DJ (2013) Site-specific, insertional inactivation of incA in Chlamydia trachomatis using a group II intron. PLoS One 8(12):e83989

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lowden NM, Yeruva L, Johnson CM et al (2015) Use of aminoglycoside 3′ adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability. BMC Res Notes 8:1–10

    Article  Google Scholar 

  13. Weber MM, Noriea NF, Bauler LD et al (2016) A functional core of IncA is required for Chlamydia trachomatis inclusion fusion. J Bacteriol 198:1347–1355

    Article  PubMed  PubMed Central  Google Scholar 

  14. Weber MM, Lam JL, Dooley CA et al (2017) Absence of specific Chlamydia trachomatis inclusion membrane proteins triggers premature inclusion membrane lysis and host cell death. Cell Rep 19:1406–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mueller KE, Wolf K, Fields KA (2016) Gene deletion by fluorescence-reported allelic exchange mutagenesis in Chlamydia trachomatis. MBio 7:1–9

    Article  Google Scholar 

  16. Keb G, Hayman R, Fields KA (2018) Floxed-cassette allelic exchange mutagenesis enables markerless gene deletion in Chlamydia trachomatis and can reverse cassette-induced polar effects. J Bacteriol 200(24):e00479–e00418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Enyeart PJ, Mohr G, Ellington AD, Lambowitz AM (2014) Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mob DNA 5:1–19

    Article  Google Scholar 

  18. Yao J, Lambowitz AM (2007) Gene targeting in gram-negative bacteria by use of a mobile group II intron (“Targetron”) expressed from a broad-host-range vector. Appl Environ Microbiol 73:2735–2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhong J, Karberg M, Lambowitz AM (2003) Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. Nucleic Acids Res 31:1656–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodriguez SA, Yu J, Davis G et al (2008) Targeted inactivation of Francisella tularensis genes by group II introns. Appl Environ Microbiol 74:2619–2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heap JT, Pennington OJ, Cartman ST et al (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464

    Article  CAS  PubMed  Google Scholar 

  22. Noriea NF, Clark TR, Hackstadt T (2015) Targeted knockout of the Rickettsia rickettsii OmpA surface antigen does not diminish virulence in a mammalian model system. MBio 6:1–9

    Article  CAS  Google Scholar 

  23. Cheng C, Nair ADS, Indukuri VV et al (2013) Targeted and random mutagenesis of Ehrlichia chaffeensis for the identification of genes required for in vivo infection. PLoS Pathog 9(2):e1003171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by startup funds from the University of Iowa Carver College of Medicine Department of Microbiology and Immunology to M.M.W. We thank Shelby Andersen, Annie Holtz, and Stephanie Peterson for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary M. Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weber, M.M., Faris, R. (2019). Mutagenesis of Chlamydia trachomatis Using TargeTron. In: Brown, A. (eds) Chlamydia trachomatis. Methods in Molecular Biology, vol 2042. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9694-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9694-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9693-3

  • Online ISBN: 978-1-4939-9694-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics