Skip to main content

UHPLC-QTOF-MS/MS-SPE-NMR: A Solution to the Metabolomics Grand Challenge of Higher-Throughput, Confident Metabolite Identifications

  • Protocol
  • First Online:
NMR-Based Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2037))

Abstract

Metabolomics represents a powerful, complementary approach for studying biological system responses to various biotic and abiotic stimuli. A major challenge in metabolomics is the lack of reliable annotations for all metabolites detected in complex MS and/or NMR data. To meet this challenge, we have developed an integrated UHPLC-QTOF-MS/MS-SPE-NMR system for higher-throughput metabolite identifications, which provides advanced biological context and enhances the scientific value of metabolomics data for understanding systems biology. This integrated instrumental method is less labor-intensive and more cost-effective than conventional individual methods (LC; MS; SPE; NMR). It enables the simultaneous purification and identification of primary and secondary metabolites present in biological samples. In this chapter, we describe the configuration and use of UHPLC-MS/MS-SPE-NMR in metabolite analyses ranging from sample extraction to higher-throughput metabolite annotation. With the integrated UHPLC-QTOF-MS/MS-SPE-NMR method, we have purified and confidently identified more than 100 previously known as well as unknown triterpene and flavonoid glycosides while noting that most of the identified compounds are not commercially available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beckles DM, Roessner U (2012) 5—Plant metabolomics: applications and opportunities for agricultural biotechnology. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture. Academic Press, San Diego, pp 67–81

    Chapter  Google Scholar 

  2. Dixon RA, Gang DR, Charlton AJ, Fiehn O, Kuiper HA, Reynolds TL et al (2006) Applications of metabolomics in agriculture. J Agric Food Chem 54(24):8984–8994

    Article  CAS  PubMed  Google Scholar 

  3. Resham S, Akhter F, Ashraf M, Kazi AG (2014) Chapter 2—Metabolomics role in crop improvement. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, San Diego, pp 39–55

    Chapter  Google Scholar 

  4. Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 15:473

    Article  CAS  PubMed  Google Scholar 

  5. Armitage EG, Southam AD (2016) Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics. Metabolomics 12(9):146

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schmidt MA, Goodwin TJ (2013) Personalized medicine in human space flight: using omics based analyses to develop individualized countermeasures that enhance astronaut safety and performance. Metabolomics 9(6):1134–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL (2011) Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 40(1):387–426

    Article  CAS  PubMed  Google Scholar 

  8. Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286(29):25435–25442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nicholson JK, Lindon JC (2008) Metabonomics. Nature 455:1054

    Article  CAS  PubMed  Google Scholar 

  10. Boiteau MR, Hoyt WD, Nicora DC, Kinmonth-Schultz AH, Ward KJ, Bingol K (2018) Structure elucidation of unknown metabolites in metabolomics by combined NMR and MS/MS prediction. Metabolites 8(1):8

    Article  PubMed Central  Google Scholar 

  11. Aretz I, Meierhofer D (2016) Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology. Int J Mol Sci 17(5):632

    Article  PubMed Central  Google Scholar 

  12. Guijas C, Montenegro-Burke JR, Domingo-Almenara X, Palermo A, Warth B, Hermann G et al (2018) METLIN: a technology platform for identifying knowns and unknowns. Anal Chem 90(5):3156–3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45(7):703–714

    Article  CAS  PubMed  Google Scholar 

  14. Lai Z, Tsugawa H, Wohlgemuth G, Mehta S, Mueller M, Zheng Y et al (2017) Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat Methods 15:53

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O (2016) Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trends Anal Chem 78:23–35

    Article  CAS  Google Scholar 

  16. Qiu F, Fine DD, Wherritt DJ, Lei Z, Sumner LW (2016) PlantMAT: a metabolomics tool for predicting the specialized metabolic potential of a system and for large-scale metabolite identifications. Anal Chem 88(23):11373–11383

    Article  CAS  PubMed  Google Scholar 

  17. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35(suppl_1):D521–D526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuehnbaum NL, Britz-McKibbin P (2013) New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem Rev 113(4):2437–2468

    Article  CAS  PubMed  Google Scholar 

  19. Reynolds WF (2017) Chapter 29—Natural product structure elucidation by NMR spectroscopy. In: Badal S, Delgoda R (eds) Pharmacognosy. Academic Press, Boston, pp 567–596

    Chapter  Google Scholar 

  20. Emwas A-HM (2015) The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. In: Bjerrum JT (ed) Metabonomics: methods and protocols. Springer New York, New York, NY, pp 161–193

    Google Scholar 

  21. Molinski TF (2010) NMR of natural products at the ‘nanomole-scale’. Nat Prod Rep 27(3):321–329

    Article  CAS  PubMed  Google Scholar 

  22. Molinski TF (2010) Microscale methodology for structure elucidation of natural products. Curr Opin Biotechnol 21(6):819–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hooft Justin JJ, Mihaleva V, Vos Ric CH, Bino Raoul J, Vervoort J (2012) A strategy for fast structural elucidation of metabolites in small volume plant extracts using automated MS-guided LC-MS-SPE-NMR. Magn Reson Chem 49(S1):S55–S60

    Google Scholar 

  24. Exarchou V, Krucker M, van Beek Teris A, Vervoort J, Gerothanassis Ioannis P, Albert K (2005) LC–NMR coupling technology: recent advancements and applications in natural products analysis. Magn Reson Chem 43(9):681–687

    Article  CAS  PubMed  Google Scholar 

  25. Sharman GJ, Jones IC (2003) Critical investigation of coupled liquid chromatography–NMR spectroscopy in pharmaceutical impurity identification. Magn Reson Chem 41(6):448–454

    Article  CAS  Google Scholar 

  26. Pullen FS, Swanson AG, Newman MJ, Richards DS (1995) ‘On-line’ liquid chromatography/nuclear magnetic resonance mass spectrometry—a powerful spectroscopic tool for the analysis of mixtures of pharmaceutical interest. Rapid Commun Mass Spectrom 9(11):1003–1006

    Article  CAS  Google Scholar 

  27. Schlotterbeck G, Ceccarelli SM (2009) LC–SPE–NMR–MS: a total analysis system for bioanalysis. Bioanalysis 1(3):549–559

    Article  CAS  PubMed  Google Scholar 

  28. Godejohann M, Tseng L-H, Braumann U, Fuchser J, Spraul M (2004) Characterization of a paracetamol metabolite using on-line LC-SPE-NMR-MS and a cryogenic NMR probe. J Chromatogr A 1058(1):191–196

    Article  CAS  PubMed  Google Scholar 

  29. Clarkson C, Hansen SH, Jaroszewski JW (2005) Hyphenation of solid-phase extraction with liquid chromatography and nuclear magnetic resonance: application of HPLC-DAD-SPE-NMR to identification of constituents of Kanahia laniflora. Anal Chem 77(11):3547–3553

    Article  CAS  PubMed  Google Scholar 

  30. Sprogøe K, Stærk D, Jäger AK, Adsersen A, Hansen SH, Witt M et al (2007) Targeted natural product isolation guided by HPLC–SPE–NMR: constituents of Hubertia species. J Nat Prod 70(9):1472–1477

    Article  PubMed  Google Scholar 

  31. Khakimov B, Tseng HL, Godejohann M, Bak S, Engelsen BS (2016) Screening for triterpenoid Saponins in plants using hyphenated analytical platforms. Molecules 21(12)

    Article  PubMed Central  Google Scholar 

  32. Kenny O, Smyth TJ, Hewage CM, Brunton NP, McLoughlin P (2014) 4-Hydroxyphenylacetic acid derivatives of inositol from dandelion (Taraxacum officinale) root characterised using LC–SPE–NMR and LC–MS techniques. Phytochemistry 98:197–203

    Article  CAS  PubMed  Google Scholar 

  33. Kongstad KT, Wubshet SG, Johannesen A, Kjellerup L, Winther A-ML, Jäger AK et al (2014) High-resolution screening combined with HPLC-HRMS-SPE-NMR for identification of fungal plasma membrane H+-ATPase inhibitors from plants. J Agric Food Chem 62(24):5595–5602

    Article  CAS  PubMed  Google Scholar 

  34. Liu F, Wang Y-N, Li Y, Ma S-G, Qu J, Liu Y-B et al (2017) Rhodoterpenoids A–C, three new rearranged triterpenoids from Rhododendron latoucheae by HPLC–MS–SPE–NMR. Sci Rep 7(1):7944

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Sumner lab has been graciously supported by several entities over the years for the development of metabolite identifications, natural products profiling, and plant metabolomics. These specifically include support from the University of Missouri, the Samuel Roberts Noble Foundation, Bruker BioSpin and Daltonics Gmbh, Agilent Technologies, NSF-JST Metabolomics for a Low Carbon Society #1139489, NSF-MRI-DBI #1126719, NSF-RCN #1340058, and NSF-MCB #1024976. We thank Drs. Ulrich Braumann (Bruker BioSpin), Aiko Barsch (Bruker Daltonics), Daniel J. Wherritt (Noble Foundation), and Dennis Fine (Noble Foundation) for their operational and technical guidance in assembling the UHPLC-MS-SPE-NMR ensemble.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd W. Sumner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhatia, A., Sarma, S.J., Lei, Z., Sumner, L.W. (2019). UHPLC-QTOF-MS/MS-SPE-NMR: A Solution to the Metabolomics Grand Challenge of Higher-Throughput, Confident Metabolite Identifications. In: Gowda, G., Raftery, D. (eds) NMR-Based Metabolomics. Methods in Molecular Biology, vol 2037. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9690-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9690-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9689-6

  • Online ISBN: 978-1-4939-9690-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics