Skip to main content

3D + Time Imaging and Image Reconstruction of Pectoral Fin During Zebrafish Embryogenesis

  • Protocol
  • First Online:
Computer Optimized Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2040))

Abstract

Morphogenesis is the fundamental developmental process during which the embryo body is formed. Proper shaping of different body parts depends on cellular divisions and rearrangements in the growing embryo. Understanding three-dimensional shaping of organs is one of the basic questions in developmental biology. Here, we consider the early stages of pectoral fin development in zebrafish, which serves as a model for limb development in vertebrates, to study emerging shapes during embryogenesis. Most studies on pectoral fin are concerned with late stages of fin development when the structure is morphologically distinct. However, little is known about the early stages of pectoral fin formation because of the experimental difficulties in establishing proper imaging conditions during these stages to allow long-term live observation. In this protocol, we address the challenges of pectoral fin imaging during the early stages of zebrafish embryogenesis and provide a strategy for three-dimensional shape analysis of the fin. The procedure outlined here is aimed at studying pectoral fin during the first 24 h of its formation corresponding to the time period between 24 and 48 h of zebrafish development. The same principles could also be applied when studying three-dimensional shape establishment of other embryonic structures. We first discuss the imaging procedure and then propose strategies of extracting quantitative information regarding fin shape and dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mercader N (2007) Early steps of paired fin development in zebrafish compared with tetrapod limb development. Develop Growth Differ 49:421–437

    Article  CAS  Google Scholar 

  2. Zeller R, López-Ríos J, Zuniga A (2009) Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat Rev Genet 10:845–858

    Article  CAS  Google Scholar 

  3. Ahn D-G, Kourakis MJ, Rohde LA et al (2002) T-box gene tbx5 is essential for formation of the pectoral limb bud. Nature 417:754–758

    Article  CAS  Google Scholar 

  4. Fischer S, Draper BW, Neumann CJ (2003) The zebrafish fgf24 mutant identifies an additional level of Fgf signaling involved in vertebrate forelimb initiation. Development 130:3515–3524

    Article  CAS  Google Scholar 

  5. Norton WHJ, Ledin J, Grandel H et al (2005) HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development. Development 132:4963–4973

    Article  CAS  Google Scholar 

  6. Nomura R, Kamei E, Hotta Y et al (2006) Fgf16 is essential for pectoral fin bud formation in zebrafish. Biochem Biophys Res Commun 347:340–346

    Article  CAS  Google Scholar 

  7. Christen B, Rodrigues AMC, Monasterio MB et al (2012) Transient downregulation of Bmp signalling induces extra limbs in vertebrates. Development 139(14):2557–2565

    Article  CAS  Google Scholar 

  8. Nagayoshi S, Hayashi E, Abe G et al (2007) Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like. Development 135(1):159–169

    Article  Google Scholar 

  9. Ng JK, Kawakami Y, Büscher D et al (2002) The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development 129(22):5161–5170

    CAS  PubMed  Google Scholar 

  10. Ober EA, Verkade H, Field HA et al (2006) Mesodermal Wnt2b signalling positively regulates liver specification. Nature 442(7103):688–691

    Article  CAS  Google Scholar 

  11. Wyngaarden LA, Vogeli KM, Ciruna BG et al (2010) Oriented cell motility and division underlie early limb bud morphogenesis. Development 137:2551–2558

    Article  CAS  Google Scholar 

  12. Mao Q, Stinnett HK, Ho RK (2015) Asymmetric cell convergence-driven zebrafish fin bud initiation and pre-pattern requires Tbx5a control of a mesenchymal Fgf signal. Development 142:4329–4339

    Article  CAS  Google Scholar 

  13. Hernández-Vega A, Minguillón C (2011) The Prx1 limb enhancers: targeted gene expression in developing zebrafish pectoral fins. Dev Dyn 240:1977–1988

    Article  Google Scholar 

  14. Masselink W, Cole NJ, Fenyes F et al (2016) A somitic contribution to the apical ectodermal ridge is essential for fin formation. Nature 535(7613):542–546

    Article  CAS  Google Scholar 

  15. Zeller R, Duboule D (1997) Dorso-ventral limb polarity and origin of the ridge: on the fringe of independence? Bioessays 19:541–546

    Article  CAS  Google Scholar 

  16. Recher G, Jouralet J, Brombin A et al (2013) Zebrafish midbrain slow-amplifying progenitors exhibit high levels of transcripts for nucleotide and ribosome biogenesis. Development 140:4860–4869

    Article  CAS  Google Scholar 

  17. Kimmel CB, Ballard WW, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310

    Article  CAS  Google Scholar 

  18. Westerfield M (2000) The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). http://zfin.org/zf_info/zfbook/cont.html

  19. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Meth 9(7):671–675

    Article  CAS  Google Scholar 

  20. Fiji. https://imagej.net/Fiji/Downloads

  21. Parslow A, Cardona A, Bryson-Richardson RJ (2014) Sample drift correction following 4D confocal time-lapse imaging. J Vis Exp. https://doi.org/10.3791/51086.

  22. Correct 3D drift. https://github.com/fiji/Correct_3D_Drift/releases/tag/Correct_3D_Drift-1.0.1

  23. Miura K (2004) CorrectBleach. https://zenodo.org/record/30769 - .W4xTHX59hJw

  24. Fin Segmentation automated macro. https://github.com/MolecularImagingPlatformIBMB/ZebrafishFin.git

  25. Rosen JN, Sweeney MF, Mably JD (2009) Microinjection of zebrafish embryos to analyze gene function. J Vis Exp 25:e1115

    Google Scholar 

  26. Virtual Stack. https://imagej.nih.gov/ij/docs/guide/146-8.html - sub:Virtual-Stacks

  27. Bleach Correction. https://imagej.net/Bleach_Correction

  28. Piatkevich KD, Verkhusha VV (2011) Guide to red fluorescent proteins and biosensors for flow cytometry. Methods Cell Biol. Elsevier 102:431–461

    Article  CAS  Google Scholar 

  29. Z Project. https://imagej.net/Z-functions

  30. Rolling ball. http://imagejdocu.tudor.lu/doku.php?id=gui:process:subtract_background

  31. Threshold. http://imagej.net/Auto_Threshold - Available_methods

Download references

Acknowledgements

Elena Kardash is grateful to Dr. Nadine Peyriéras and her laboratory for providing supporting environment for working on the present chapter. E.K. is supported by ANR-10-INBS-04 through the National Infrastructure France-BioImaging supported by the French National Research Agency, and H.N is supported by 2017-ITN-721537 as part of the ITN ImageInLife Marie Skłodowska-Curie Actions. Jaume Boix-Fabrés is supported by a PTA contract from the Spanish Ministry of Economy and Competitiveness at the Molecular Imaging Platform IBMB-PCB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Kardash .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary Data

(ZIP 72765 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nguyen, H., Boix-Fabrés, J., Peyriéras, N., Kardash, E. (2019). 3D + Time Imaging and Image Reconstruction of Pectoral Fin During Zebrafish Embryogenesis. In: Rebollo, E., Bosch, M. (eds) Computer Optimized Microscopy. Methods in Molecular Biology, vol 2040. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9686-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9686-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9685-8

  • Online ISBN: 978-1-4939-9686-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics