Skip to main content

Filopodia Quantification Using FiloQuant

  • Protocol
  • First Online:
Computer Optimized Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2040))

Abstract

Filopodia are fingerlike membrane protrusions that are extended by cells in vitro and in vivo. Due to important roles in sensing the extracellular microenvironment, filopodia and filopodia-like protrusions have been implicated in numerous biological processes including epithelial sheet zippering in development and wound healing and in cancer progression. Recently, there has been an explosion in the number of software available to analyze specific features of cell protrusions with the aim of gaining mechanistic insights into the action of filopodia and filopodia-like structures. In this methods chapter, we highlight an open-access software called FiloQuant that has been developed to specifically quantify the length, density, and dynamics of filopodia and filopodia-like structures from in vitro and in vivo generated samples. We provide step-by-step protocols on (i) how to install FiloQuant in the ImageJ platform (Fiji), (ii) how to quantify filopodia and filopodia-like protrusions from single images using FiloQuant, and (iii) how to track filopodial protrusions from live-cell imaging experiments using FiloQuant and TrackMate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjonen A, Kaukonen R, Ivaska J (2011) Filopodia and adhesion in cancer cell motility. Cell Adhes Migr 5:421–430

    Article  Google Scholar 

  2. Biswas KH, Zaidel-Bar R (2017) Early events in the assembly of E-cadherin adhesions. Exp Cell Res 358:14–19

    Article  CAS  Google Scholar 

  3. Jacquemet G, Hamidi H, Ivaska J (2015) Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr Opin Cell Biol 36:23–31

    Article  CAS  Google Scholar 

  4. Jacquemet G, Green DM, Bridgewater RE et al (2013) RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex. J Cell Biol 202:917–935

    Article  CAS  Google Scholar 

  5. Paul NR, Allen JL, Chapman A et al (2015) α5β1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3. J Cell Biol 210:1013–1031

    Article  CAS  Google Scholar 

  6. Jacquemet G, Paatero I, Carisey AF et al (2017) FiloQuant reveals increased filopodia density during breast cancer progression. J Cell Biol 216:3387–3403. https://doi.org/10.1083/jcb.201704045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wood W, Jacinto A, Grose R et al (2002) Wound healing recapitulates morphogenesis in Drosophila embryos. Nat Cell Biol 4:907–912

    Article  CAS  Google Scholar 

  8. Sato Y, Nagatoshi K, Hamano A et al (2017) Basal filopodia and vascular mechanical stress organize fibronectin into pillars bridging the mesoderm-endoderm gap. Development 144:281–291

    Article  CAS  Google Scholar 

  9. Heusermann W, Hean J, Trojer D et al (2016) Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol 213:173–184

    Article  CAS  Google Scholar 

  10. Nilufar S, Morrow AA, Lee JM et al (2013) FiloDetect: automatic detection of filopodia from fluorescence microscopy images. BMC Syst Biol 7:66

    Article  Google Scholar 

  11. Tsygankov D, Bilancia CG, Vitriol EA et al (2014) CellGeo: a computational platform for the analysis of shape changes in cells with complex geometries. J Cell Biol 204:443–460

    Article  CAS  Google Scholar 

  12. Barry DJ, Durkin CH, Abella JV et al (2015) Open source software for quantification of cell migration, protrusions, and fluorescence intensities. J Cell Biol 209:163–180

    Article  CAS  Google Scholar 

  13. Urbančič V, Butler R, Richier B et al (2017) Filopodyan: an open-source pipeline for the analysis of filopodia. J Cell Biol 216:3405–3422. https://doi.org/10.1083/jcb.201705113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  15. Tinevez J-Y, Perry N, Schindelin J et al (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods (San Diego, Calif) 115:80–90

    Article  CAS  Google Scholar 

  16. Enhance Local Contrast (CLAHE)—ImageJ. https://imagej.net/Enhance_Local_Contrast_(CLAHE)

  17. Arganda-Carreras I, Fernández-González R, Muñoz-Barrutia A et al (2010) 3D reconstruction of histological sections: application to mammary gland tissue. Microsc Res Tech 73:1019–1029

    Article  Google Scholar 

  18. Rueden CT, Schindelin J, Hiner MC et al (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18:529

    Article  Google Scholar 

  19. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  20. Fiji is just ImageJ. https://fiji.sc/

  21. Temporal-Color Code. https://imagej.net/Temporal-Color_Code

  22. Gustafsson N, Culley S, Ashdown G et al (2016) Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun 7:12471

    Article  CAS  Google Scholar 

  23. Skeletonize3D. http://imagej.net/Skeletonize3D

  24. AnalyzeSkeleton. http://imagej.net/AnalyzeSkeleton

  25. TrackMate. https://imagej.net/TrackMate

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Jacquemet .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jacquemet, G., Hamidi, H., Ivaska, J. (2019). Filopodia Quantification Using FiloQuant. In: Rebollo, E., Bosch, M. (eds) Computer Optimized Microscopy. Methods in Molecular Biology, vol 2040. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9686-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9686-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9685-8

  • Online ISBN: 978-1-4939-9686-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics