Skip to main content

Photobleaching and Sensitized Emission-Based Methods for the Detection of Förster Resonance Energy Transfer

  • Protocol
  • First Online:
Computer Optimized Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2040))

Abstract

Förster resonance energy transfer (FRET) is a non-radiative interaction between two molecules that happens at distances in the range of a few nanometers. Using FRET interactions between suitably selected fluorophores allows to study molecular interactions or conformational changes of single molecules on fluorescence microscopes even though the optical resolution of the microscope is limited to distances that are almost two orders of magnitude higher.

In this chapter several variants of FRET detection methods are described that are based either on the targeted photobleaching of one of the participating molecule species or on the direct detection of the fluorescence signal that is created as a result of the FRET interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 437(1–2):55–75

    Article  Google Scholar 

  2. Bastiaens P, Majoul IV, Verveer PJ, Söling H-D, Jovin TM (1996) Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J 15(16):4246–4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karpova T, Baumann C, He L, Wu X, Grammer A, Lipsky P, Hager G, McNally J (2003) Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J Microsc 209(1):56–70

    Article  CAS  PubMed  Google Scholar 

  4. Wouters FS, Bastiaens PI, Wirtz KW, Jovin TM (1998) FRET microscopy demonstrates molecular association of non-specific lipid transfer protein (nsL-TP) with fatty acid oxidation enzymes in peroxisomes. EMBO J 17(24):7179–7189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jovin TM, Arndt-Jovin DJ (1989) FRET microscopy: digital imaging of fluorescence resonance energy transfer. Application in cell biology. In: Kohen E, Ploem JS, Hirschberg JG (eds) Cell structure and function by microspectrofluorometry. Academic Press, Orlando, pp 99–117

    Chapter  Google Scholar 

  6. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca 2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882

    Article  CAS  PubMed  Google Scholar 

  7. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  8. Amiri H, Schultz G, Schaefer M (2003) FRET-based analysis of TRPC subunit stoichiometry. Cell Calcium 33(5–6):463–470

    Article  CAS  PubMed  Google Scholar 

  9. Youvan DC, Silva CM, Bylina EJ, Coleman WJ, Dilworth MR, Yang MM (2003) Calibration of fluorescence resonance energy transfer in microscopy using genetically engineered GFP derivatives on nickel chelating beads. Biotechnology 3:1–18

    Google Scholar 

  10. Wouters FS, Verveer PJ, Bastiaens PI (2001) Imaging biochemistry inside cells. Trends Cell Biol 11(5):203–211

    Article  CAS  PubMed  Google Scholar 

  11. Zal T, Gascoigne NR (2004) Photobleaching-corrected FRET efficiency imaging of live cells. Biophys J 86(6):3923–3939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kremers G-J, Hazelwood KL, Murphy CS, Davidson MW, Piston DW (2009) Photoconversion in orange and red fluorescent proteins. Nat Methods 6(5):355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Valentin G, Verheggen C, Piolot T, Neel H, Coppey-Moisan M, Bertrand E (2005) Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments. Nat Methods 2(11):801

    Article  CAS  PubMed  Google Scholar 

  14. Seitz A, Terjung S, Zimmermann T, Pepperkok R (2012) Quantifying the influence of yellow fluorescent protein photoconversion on acceptor photobleaching-based fluorescence resonance energy transfer measurements. J Biomed Opt 17(1):011010

    Article  PubMed  Google Scholar 

  15. Sinnecker D, Voigt P, Hellwig N, Schaefer M (2005) Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44(18):7085–7094

    Article  CAS  PubMed  Google Scholar 

  16. Van Munster E, Kremers G, Adjobo-Hermans M, Gadella TW (2005) Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. J Microsc 218(3):253–262

    Article  PubMed  Google Scholar 

  17. Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74(5):2702–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nagy P, Vámosi G, Bodnár A, Lockett SJ, Szöllősi J (1998) Intensity-based energy transfer measurements in digital imaging microscopy. Eur Biophys J 27(4):377–389

    Article  CAS  PubMed  Google Scholar 

  19. van Rheenen J, Langeslag M, Jalink K (2004) Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. Biophys J 86(4):2517–2529

    Article  PubMed  PubMed Central  Google Scholar 

  20. Elangovan M, Wallrabe H, Chen Y, Day RN, Barroso M, Periasamy A (2003) Characterization of one-and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29(1):58–73

    Article  CAS  PubMed  Google Scholar 

  21. Vanderklish PW, Krushel LA, Holst BH, Gally JA, Crossin KL, Edelman GM (2000) Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proc Natl Acad Sci 97(5):2253–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Żal T, Żal MA, Gascoigne NR (2002) Inhibition of T cell receptor-coreceptor interactions by antagonist ligands visualized by live FRET imaging of the T-hybridoma immunological synapse. Immunity 16(4):521–534

    Article  PubMed  Google Scholar 

  23. Erickson MG, Alseikhan BA, Peterson BZ, Yue DT (2001) Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron 31(6):973–985

    Article  CAS  PubMed  Google Scholar 

  24. Xia Z, Liu Y (2001) Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys J 81(4):2395–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen H, Puhl HL 3rd, Koushik SV, Vogel SS, Ikeda SR (2006) Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys J 91(5):L39–L41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoppe A, Christensen K, Swanson JA (2002) Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys J 83(6):3652–3664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heim R (1999) Green fluorescent protein forms for energy transfer. Methods Enzymol 302:408–423

    Article  CAS  PubMed  Google Scholar 

  28. Dickinson M, Bearman G, Tille S, Lansford R, Fraser S (2001) Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. BioTechniques 31(6):1272–1279

    Article  CAS  PubMed  Google Scholar 

  29. Zimmermann T, Rietdorf J, Pepperkok R (2003) Spectral imaging and its applications in live cell microscopy. FEBS Lett 546(1):87–92

    Article  CAS  PubMed  Google Scholar 

  30. Schleifenbaum A, Stier G, Gasch A, Sattler M, Schultz C (2004) Genetically encoded FRET probe for PKC activity based on pleckstrin. J Am Chem Soc 126(38):11786–11787

    Article  CAS  PubMed  Google Scholar 

  31. Zimmermann T, Rietdorf J, Girod A, Georget V, Pepperkok R (2002) Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2–YFP FRET pair. FEBS Lett 531(2):245–249

    Article  CAS  PubMed  Google Scholar 

  32. Chen Y, Mauldin JP, Day RN, Periasamy A (2007) Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions. J Microsc 228(2):139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wlodarczyk J, Woehler A, Kobe F, Ponimaskin E, Zeug A, Neher E (2008) Analysis of FRET signals in the presence of free donors and acceptors. Biophys J 94(3):986–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Woehler A, Wlodarczyk J, Neher E (2010) Signal/noise analysis of FRET-based sensors. Biophys J 99(7):2344–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Megias D, Marrero R, Martinez Del Peso B, Garcia MA, Bravo-Cordero JJ, Garcia-Grande A, Santos A, Montoya MC (2009) Novel lambda FRET spectral confocal microscopy imaging method. Microsc Res Tech 72(1):1–11. https://doi.org/10.1002/jemt.20633

    Article  PubMed  Google Scholar 

  36. Domingo B, Sabariegos R, Picazo F, Llopis J (2007) Imaging FRET standards by steady-state fluorescence and lifetime methods. Microsc Res Tech 70(12):1010–1021

    Article  CAS  PubMed  Google Scholar 

  37. Pietraszewska-Bogiel A, Gadella T (2011) FRET microscopy: from principle to routine technology in cell biology. J Microsc 241(2):111–118

    Article  CAS  PubMed  Google Scholar 

  38. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87

    Article  CAS  PubMed  Google Scholar 

  39. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein mechanism and applications. J Biol Chem 276(31):29188–29194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The fitting macros “linear fit acceptor photobleaching.ijm” and “exponential fit donor photobleaching.ijm” were kindly provided by Raul Gomez, Centre for Genomic Regulation, Barcelona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Zimmermann .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Supplementary Data 1

(ZIP 8565 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zimmermann, T. (2019). Photobleaching and Sensitized Emission-Based Methods for the Detection of Förster Resonance Energy Transfer. In: Rebollo, E., Bosch, M. (eds) Computer Optimized Microscopy. Methods in Molecular Biology, vol 2040. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9686-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9686-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9685-8

  • Online ISBN: 978-1-4939-9686-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics