Skip to main content

Generation and Applicability of Genetic Risk Scores (GRS) in Stroke

  • Protocol
  • First Online:
Stroke Biomarkers

Part of the book series: Neuromethods ((NM,volume 147))

Abstract

In this chapter genetic risk scores (GRS), also called polygenic risk scores (PRS), are described as feasible biomarkers to predict stroke risk. GRS are based on genome-wide association studies (GWAs) results. Use of GWAs has allowed the discovery of multiple variants associated with stroke which has led to an increase in stroke pathophysiology knowledge. However, it would be necessary to consider the cumulative risk of all associated variants to make GWAs results applicable in clinical practice. GRS summarize information from significant genetic variants into a single score. The most frequent way for GRS construction is based on the selection of the most significant single nucleotide polymorphisms (SNPs) from the largest GWAs for a trait. Then, allele dosage for each SNP is weighted using estimated effect sizes for each variant. Next, global fit, discrimination capacity, calibration, and reclassification of GRS have to be evaluated. Furthermore, replication in independent cohorts is necessary. Stroke is a disease with complex genetic architecture. Multiple loci with small effect sizes have been found to increase stroke risk. In this case, GRS could enable the translation of genetics into clinical practice in different ways, such as stroke risk prediction or differentiation of stroke subtypes to give specific secondary prevention drugs depending on the type of ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang MH, Cordell HJ, Van Steen K (2019) Statistical methods for genome-wide association studies. Semin Cancer Biol 55:53–60

    Article  Google Scholar 

  2. Pasaniuc B, Rohland N, McLaren PJ et al (2012) Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat Genet 44:631–635. https://doi.org/10.1038/ng.2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goldstein BA, Yang L, Salfati E, Assimes TL (2015) Contemporary considerations for constructing a genetic risk score: an empirical approach. Genet Epidemiol 39:439–445. https://doi.org/10.1002/gepi.21912

    Article  PubMed  PubMed Central  Google Scholar 

  4. Malik R, Bevan S, Nalls MA et al (2014) Multilocus genetic risk score associates with ischemic stroke in case-control and prospective cohort studies. Stroke 45:394–402. https://doi.org/10.1161/STROKEAHA.113.002938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ibrahim-Verbaas CA, Fornage M, Bis JC et al (2014) Predicting stroke through genetic risk functions the CHARGE risk score project. Stroke 45:403–412. https://doi.org/10.1161/STROKEAHA.113.003044

    Article  PubMed  PubMed Central  Google Scholar 

  6. Belsky DW, Moffitt TE, Sugden K et al (2013) Development and evaluation of a genetic risk score for obesity. Biodemogr Soc Biol 59:85–100. https://doi.org/10.1080/19485565.2013.774628

    Article  Google Scholar 

  7. Bush WS, Moore JH (2012) Genome-wide association studies. PLoS Comput Biol 8(12):e1002822. https://doi.org/10.1371/journal.pcbi.1002822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Das S, Forer L, Schönherr S et al (2016) Next-generation genotype imputation service and methods. Nat Genet 48:1284–1287. https://doi.org/10.1038/ng.3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Laurie CC, Doheny KF, Mirel DB et al (2010) Quality control and quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol 34:591–602. https://doi.org/10.1002/gepi.20516

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dehghan A (2018) Genome-wide association studies. Methods Mol Biol 1793:37–49. https://doi.org/10.1007/978-1-4939-7868-7_4

    Article  CAS  PubMed  Google Scholar 

  11. Howie B, Marchini J, Stephens M (2011) Genotype imputation with thousands of genomes. G3 1:457–470. https://doi.org/10.1534/g3.111.001198

    Article  PubMed  Google Scholar 

  12. Belmont JW, Hardenbol P, Willis TD et al (2003) The international HapMap project. Nature 426:789–796. https://doi.org/10.1038/nature02168

    Article  CAS  Google Scholar 

  13. Auton A, Abecasis GR, Altshuler DM et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74. https://doi.org/10.1038/nature15393

    Article  CAS  PubMed  Google Scholar 

  14. Sudmant PH, Rausch T, Gardner EJ et al (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526:75–81. https://doi.org/10.1038/nature15394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosenberg NA, Huang L, Jewett EM et al (2010) Genome-wide association studies in diverse populations. Nat Rev Genet 11:356–366. https://doi.org/10.1038/nrg2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson RC, Nelson GW, Troyer JL et al (2010) Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genomics 22:724. https://doi.org/10.1186/1471-2164-11-724

    Article  Google Scholar 

  17. Fadista J, Manning AK, Florez JC, Groop L (2016) The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur J Hum Genet 24:1202–1205. https://doi.org/10.1038/ejhg.2015.269

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pe’er I, Yelensky R, Altshuler D, Daly MJ (2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 32:381–385. https://doi.org/10.1002/gepi.20303

    Article  PubMed  Google Scholar 

  19. Traylor M, Farrall M, Holliday EG et al (2012) Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol 11:951–962. https://doi.org/10.1016/S1474-4422(12)70234-X

    Article  PubMed  PubMed Central  Google Scholar 

  20. NINDS Stroke Genetics Network (SiGN); International Stroke Genetics Consortium (ISGC) (2015) Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurol 15:174–184

    Google Scholar 

  21. Malik R, Chauhan G, Traylor M et al (2018) Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 50:524–537. https://doi.org/10.1038/s41588-018-0058-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Woo D, Falcone GJ, Devan WJ et al (2014) Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am J Hum Genet 94:511–521. https://doi.org/10.1016/j.ajhg.2014.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Biffi A, Sonni A, Anderson CD et al (2010) Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann Neurol 68:934–943. https://doi.org/10.1002/ana.22134

    Article  PubMed  PubMed Central  Google Scholar 

  24. Che R, Motsinger-Reif AA (2012) A new explained-variance based genetic risk score for predictive modeling of disease risk. Stat Appl Genet Mol Biol 11:15. https://doi.org/10.1515/1544-6115.1796

    Article  Google Scholar 

  25. Chagnon M, O’Loughlin J, Engert JC et al (2018) Missing single nucleotide polymorphisms in Genetic Risk Scores: a simulation study. PLoS One 13:e0200630. https://doi.org/10.1371/journal.pone.0200630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McGeechan K, Macaskill P, Irwig L et al (2008) Assessing new biomarkers and predictive models for use in clinical practice: a clinician’s guide. Arch Intern Med 168(21):2304–2310. https://doi.org/10.1001/archinte.168.21.2304

    Article  PubMed  Google Scholar 

  27. Vrieze SI (2012) Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol Methods 17:228–243. https://doi.org/10.1037/a0027127

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pencina MJ, D’Agostino RB, D’Agostino RB, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172. https://doi.org/10.1002/sim.2929

    Article  PubMed  Google Scholar 

  29. Jewell ES, Maile MD, Engoren M, Elliott M (2016) Net reclassification Improvement. Anesth Analg 122:818–824. https://doi.org/10.1213/ANE.0000000000001141

    Article  PubMed  Google Scholar 

  30. Bellenguez C, Bevan S, Gschwendtner A et al (2012) Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet 44:328–333. https://doi.org/10.1038/ng.1081

    Article  CAS  PubMed  Google Scholar 

  31. Pulit SL, Weng L-C, McArdle PF et al (2018) Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes. Neurol Genet 4:e293. https://doi.org/10.1212/NXG.0000000000000293

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Cullell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cullell, N., González-Sánchez, J., Fernández-Cadenas, I., Krupinski, J. (2020). Generation and Applicability of Genetic Risk Scores (GRS) in Stroke. In: Peplow, P.V., Martinez, B., Dambinova, S.A. (eds) Stroke Biomarkers. Neuromethods, vol 147. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9682-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9682-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9681-0

  • Online ISBN: 978-1-4939-9682-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics