Skip to main content

Glutamate Receptor Peptides as Potential Neurovascular Biomarkers of Acute Stroke

  • Protocol
  • First Online:
Stroke Biomarkers

Part of the book series: Neuromethods ((NM,volume 147))

  • 727 Accesses

Abstract

In this chapter different scenarios of biomarkers evaluating ischemic stroke caused by small vessel occlusions and leading to cerebral infarction are considered. Results of assays detecting glutamate receptor (GluR) peptides alone or combined into biomarkers panel to assess microvessel and small vessel strokes are explored in case report studies. A clinical protocol of neurovascular biomarkers implying GluR peptides is suggested for translational research assessing the severity of acute ischemic events based on structural location of cerebral infarction. It is proposed that the combination of clinical, biochemical, and radiological data might increase the diagnostic certainty of suspected acute ischemic stroke due to small occlusions in selected patients for timely and personalized therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spence JD (1999) New approaches to atherosclerosis based on endothelial function. In: Bogousslavsky J, Fisher M (eds) Cerebrovascular disease, 4th edn. Current Medicine Inc., Philadelphia, PA, pp 1–14

    Google Scholar 

  2. Roach ES, Bettermann K, Jose Biller J (2010) Toole’s cerebrovascular disorders, 6th edn. Cambridge University Press, Cambridge, p 422. https://doi.org/10.1017/CBO9781139644235

    Book  Google Scholar 

  3. The personalized medicine report 2017: opportunity, challenges, and future. http://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/The_PM_Report.pdf_. Accessed on 19 Sept 2019

  4. Ng GJL, The Ei Z, Ng MY, Quek AML, Seet RCS (2018) Resolving difficult case scenarios by incorporating stroke biomarkers in clinical decision-making. In: Peplow PV, Dambinova SA, Gennarelli TA, Martinez B (eds) Acute brain impairment: scientific discoveries and translational research. Royal Society of Chemistry, London, pp 289–314. https://doi.org/10.1039/9781788012539-00289

    Chapter  Google Scholar 

  5. Zhang JH, Badaut J, Tang J, Obenaus A, Hartman R, Pearce WJ (2012) The vascular neural network – a new paradigm in stroke pathophysiology. Nat Rev Neurol 8(12):711–716. https://doi.org/10.1038/nrneurol.2012.210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barber PA (2013) Magnetic resonance imaging of ischemia viability thresholds and the neurovascular unit. Sensors (Basel) 13(6):6981–7003. https://doi.org/10.3390/s130606981

    Article  CAS  Google Scholar 

  7. Terasaki Y, Liu Y, Hayakawa K, Pham LD, Lo EH, Ji X, Arai K (2014) Mechanisms of neurovascular dysfunction in acute ischemic brain. Curr Med Chem 21(18):2035–2042. PMID: 24372202

    Article  CAS  Google Scholar 

  8. Sommer CJ (2017) Ischemic stroke: experimental models and reality. Acta Neuropathol 133(2):245–261. https://doi.org/10.1007/s00401-017-1667-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Katan M, Elkind MSV (2018) The potential role of blood biomarkers in patients with ischemic stroke: an expert opinion. Clin Transl Neurosci. https://doi.org/10.1177/2514183X18768050

  10. Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96(1):17–42. https://doi.org/10.1016/j.neuron.2017.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hayashi MK (2018) Structure-function relationship of transporters in the glutamate-glutamine cycle of the central nervous system. Int J Mol Sci 19(4):pii: E1177. https://doi.org/10.3390/ijms19041177

    Article  CAS  Google Scholar 

  12. Dambinova SA (2012) Neurodegradomics: the source of biomarkers for mild traumatic brain injury. In: Dambinova SA, Hayes RL, Wang KKW (eds) Biomarkers for TBI. Royal Society of Chemistry, London, pp 66–86. https://doi.org/10.1039/9781849734745

    Chapter  Google Scholar 

  13. Sharp CD, Fowler M, Jackson TH 4th, Houghton J, Warren A, Nanda A, Chandler I, Cappell B, Long A, Minagar A, Alexander JS (2003) Human neuroepithelial cells express NMDA receptors. BMC Neurosci 4:28. PMID: 14614784

    Article  Google Scholar 

  14. Brand-Schieber E, Lowery SL, Werner P (2004) Select ionotropic glutamate AMPA/kainate receptors are expressed at the astrocyte-vessel interface. Brain Res 1007(1–2):178–182. PMID: 15064149

    Article  CAS  Google Scholar 

  15. Liu H, Leak RK, Hu X (2016) Neurotransmitter receptors on microglia. Stroke Vasc Neurol 1(2):52–58. https://doi.org/10.1136/svn-2016-000012

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sanz-Clemente A, Nicoll RA, Roche KW (2013) Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist 19(1):62–75. https://doi.org/10.1177/1073858411435129

    Article  CAS  PubMed  Google Scholar 

  17. Christensen PC, Samadi-Bahrami Z, Pavlov V, Stys PK, Moore GRW (2016) Ionotropic glutamate receptor expression in human white matter. Neurosci Lett 630:1–8. https://doi.org/10.1016/j.neulet.2016.07.030

    Article  CAS  PubMed  Google Scholar 

  18. Jin XT, Smith Y (2011) Localization and functions of kainate receptors in the basal ganglia. Adv Exp Med Biol 717:27–37. https://doi.org/10.1007/978-1-4419-9557-5_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McConnell HL, Kersch CN, Woltjer RL, Neuwelt EA (2017) The translational significance of the neurovascular unit. J Biol Chem 292(3):762–770. https://doi.org/10.1074/jbc.R116.760215

    Article  CAS  PubMed  Google Scholar 

  20. Dambinova SA, Khounteev GA, Skoromets AA (2002) Multiple panel of biomarkers for TIA/stroke evaluation. Stroke 33(5):1181–1182. PMID: 11988587

    Article  Google Scholar 

  21. Dambinova S, Bettermann K, Glynn T, Tews M, Olson D, Weissman JD, Sowell RL (2012) Diagnostic potential of the NMDA receptor peptide assay to distinguish acute ischemic stroke and stroke mimics. PLoS One 7:e42362. https://doi.org/10.1371/journal.pone.0042362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dambinova SA (2008) Biomarkers for transient ischemic attack (TIA) and ischemic stroke. Clin Lab Int 32(7):7–10. https://www.clinlabint.com/fileadmin/pdf/digital_issues_archives/CLI_Nov08.pdf

    Google Scholar 

  23. Blanco PJ, Müller LO, Spence JD (2017) Blood pressure gradients in cerebral arteries: a clue to pathogenesis of cerebral small vessel disease. Stroke Vasc Neurol 2(3):108–117. https://doi.org/10.1136/svn-2017-000087

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yuan H, Hansen KB, Vance KM, Ogden KK, Traynelis SF (2009) Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J Neurosci 29(39):12045–12058. https://doi.org/10.1523/JNEUROSCI.1365-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Möykkynen T, Coleman SK, Semenov A, Keinänen K (2014) The N-terminal domain modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor desensitization. J Biol Chem 289(19):13197–13205. https://doi.org/10.1074/jbc.M113.526301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sheng N, Shi YS, Nicoll RA (2017) Amino-terminal domains of kainate receptors determine the differential dependence on Neto auxiliary subunits for trafficking. Proc Natl Acad Sci U S A 114(5):1159–1164. https://doi.org/10.1073/pnas.1619253114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hansen KB, Ogden KK, Yuan H, Traynelis SF (2014) Distinct functional and pharmacological properties of triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81(5):1084–1096. https://doi.org/10.1016/j.neuron.2014.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greger IH, Watson JF, Cull-Candy SG (2017) Structural and functional architecture of AMPA-type glutamate receptors and their auxiliary proteins. Neuron 94(4):713–730. https://doi.org/10.1016/j.neuron.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  29. Fisher MT, Fisher JL (2014) Contributions of different kainate receptor subunits to the properties of recombinant homomeric and heteromeric receptors. Neuroscience 278:70–80. https://doi.org/10.1016/j.neuroscience.2014.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paramo T, Brown PMGE, Musgaard M, Bowie D, Biggin PC (2017) Functional validation of heteromeric kainate receptor models. Biophys J 113(10):2173–2177. https://doi.org/10.1016/j.bpj.2017.08.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan H, Vance KM, Junge CE, Geballe MT, Snyder JP, Hepler JR, Yepes M, Low CM, Traynelis SF (2009) The serine protease plasmin cleaves the amino-terminal domain of the NR2A subunit to relieve zinc inhibition of the N-methyl-D-aspartate receptors. J Biol Chem 284(19):12862–12873. https://doi.org/10.1074/jbc.M805123200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gennarelli T, Dambinova SA, Weissman JD (2018) Advances in diagnostics and treatment of neurotoxicity after sport-related injuries. In: Peplow PV, Dambinova SA, Gennarelli TA, Martinez B (eds) Acute brain impairment: scientific discoveries and translational research. Royal Society of Chemistry, London, pp 141–161. https://doi.org/10.1039/9781788012539-00141

    Chapter  Google Scholar 

  33. Dambinova SA, Khounteev GA, Izykenova GA, Zavolokov IG, Ilyukhina AY, Skoromets AA (2003) Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin Chem 49(10):1752–1762. PMID: 14500616

    Article  CAS  Google Scholar 

  34. Ponomarev GV, Dambinova SA, Skoromets AA (2018) Neurotoxicity in spinal cord impairments. In: Peplow PV, Dambinova SA, Gennarelli TA, Martinez B (eds) Acute brain impairment: scientific discoveries and translational research. Royal Society of Chemistry, London, pp 198–213. https://doi.org/10.1039/9781788012539-00198

    Chapter  Google Scholar 

  35. Sharp CD, Houghton J, Elrod JW, Warren A, Jackson TH 4th, Jawahar A, Nanda A, Minagar A, Alexander JS (2005) N-methyl-D-aspartate receptor activation in human cerebral endothelium promotes intracellular oxidant stress. Am J Physiol Heart Circ Physiol 288(4):H1893–H1899. https://doi.org/10.1152/ajpheart.01110.2003

    Article  CAS  PubMed  Google Scholar 

  36. Abraham HM, Wolfson L, Moscufo N, Guttmann CR, Kaplan RF, White WB (2016) Cardiovascular risk factors and small vessel disease of the brain: blood pressure, white matter lesions, and functional decline in older persons. J Cereb Blood Flow Metab 36(1):132–142. https://doi.org/10.1038/jcbfm.2015.121

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bettermann K, Slocomb J, Shivkumar V, Quillen D, Gardner TW, Lott ME (2017) Impaired retinal vasoreactivity: an early marker of stroke risk in diabetes. J Neuroimaging 27(1):78–84. https://doi.org/10.1111/jon.12412

    Article  PubMed  Google Scholar 

  38. Dambinova SA, Aliev KT, Bondarenko EV, Ponomarev GV, Skoromets AA, Skoromets AP, Skoromets TA, Smolko DG, Shumilina MV (2017) The biomarkers of cerebral ischemia as a new method for the validation of the efficacy of cytoprotective therapy. Zh Nevrol Psikhiatr Im S S Korsakova 117(5):62–67. https://doi.org/10.17116/jnevro20171175162-67

    Article  CAS  PubMed  Google Scholar 

  39. Brightwell RE (2007) Plasma biomarkers for the early diagnosis of stroke. 29th charing cross intern symposium, CX Innovations Showcase, London

    Google Scholar 

  40. Weissman JD, Ponomarev G, Heath R, Boiser J, Dambinova S (2018) Rapid point-of-care NR2 peptide test for acute stroke detection. abstractonline.com, Session P9, Abstract WP212, Jan 24

    Google Scholar 

  41. Hirai S, Hotta K, Kubo Y, Nishino A, Okabe S, Okamura Y, Okado H (2017) AMPA glutamate receptors are required for sensory-organ formation and morphogenesis in the basal chordate. Proc Natl Acad Sci U S A 114(15):3939–3944. https://doi.org/10.1073/pnas.1612943114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Beppu K, Kosai Y, Kido MA, Akimoto N, Mori Y, Kojima Y, Fujita K, Okuno Y, Yamakawa Y, Ifuku M, Shinagawa R, Nabekura J, Sprengel R, Noda M (2013) Expression, subunit composition, and function of AMPA-type glutamate receptors are changed in activated microglia; possible contribution of GluA2 (GluR-B)-deficiency under pathological conditions. Glia 61(6):881–891. https://doi.org/10.1002/glia.22481

    Article  PubMed  Google Scholar 

  43. Torres-Platas SG, Comeau S, Rachalski A, Bo GD, Cruceanu C, Turecki G, Giros B, Mechawar N (2014) Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation 11:12. https://doi.org/10.1186/1742-2094-11-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li S, Stys PK (2000) Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J Neurosci 20(3):1190–1198

    Article  CAS  Google Scholar 

  45. Dambinova SA, Gill S, St. Onge L, Sowell R (2012) Biomarkers for subtle brain dysfunction. In: Dambinova SA, Hayes RL, Wang KKW (eds) Biomarkers for TBI. Royal Society of Chemistry, London, pp 134–147. https://doi.org/10.1039/9781849734745-00134

    Chapter  Google Scholar 

  46. Dambinova SA, Maroon JC, Sufrinko AM, Mullins JD, Alexandrova EV, Potapov AA (2016) Functional, structural, and neurotoxicity biomarkers in integrative assessment of concussions. Front Neurol 7:172. https://doi.org/10.3389/fneur.2016.00172

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pires PW, Dams Ramos CM, Matin N, Dorrance AM (2013) The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol 304(12):H1598–H1614. https://doi.org/10.1152/ajpheart.00490.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoiland RL, Bain AR, Rieger MG, Bailey DM, Ainslie PN (2016) Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 310(5):R398–R413. https://doi.org/10.1152/ajpregu.00270.2015

    Article  PubMed  Google Scholar 

  49. Zwank MD, Dummer BW, Danielson LT, Haake BC (2014) Lacunar stroke in a teenager after minor head trauma: case report and literature review. J Child Neurol 29(9):NP65–NP68. https://doi.org/10.1177/0883073813500850

    Article  PubMed  Google Scholar 

  50. Chalela JA, Kidwell CS, Nentwich LM et al (2007) Magnetic resonance imaging and computed tomography in the emergency assessment of patient’s with suspected acute stroke: a prospective comparison. Lancet 369:293–298. https://doi.org/10.1016/S0140-6736(07)60151-2

    Article  PubMed  PubMed Central  Google Scholar 

  51. van der Worp HB, van Gijn J (2007) Acute ischemic stroke. N Engl J Med 357:572–912. https://doi.org/10.1056/NEJMcp072057

    Article  PubMed  Google Scholar 

  52. Hand PJ, Kwan J, Lindley RI et al (2006) Distinguishing between stroke and mimic at the bedside: the brain attack study. Stroke 37:769–775. https://doi.org/10.1161/01.STR.0000204041.13466.4c

    Article  PubMed  Google Scholar 

  53. Hand PJ, Wardlaw JM, Rowat AM, Haisma JA, Lindley RI, Dennis MS (2005) Magnetic resonance brain imaging in patients with acute stroke: feasibility and patient related difficulties. J Neurol Neurosurg Psychiatry 76(11):1525–1527. https://doi.org/10.1136/jnnp.2005.062539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. von Kummer R, Dzialowski I (2007) MRI versus CT in acute stroke. Lancet 369(9570):1341–1342. https://doi.org/10.1016/S0140-6736(07)60621-7

    Article  Google Scholar 

  55. Kloppenborg RP, Nederkoorn PJ, Grool AM, De Cocker LJL, Mali WPTM, van der Graaf Y, Geerlings MI for the SMART Study Group (2017) Do lacunar infarcts have different etiologies? Risk factor profiles of lacunar infarcts in deep white matter and basal Ganglia: the second manifestations of arterial disease-magnetic resonance study. Cerebrovasc Dis 43:161–168. https://doi.org/10.1159/000454782

    Article  Google Scholar 

  56. Radu RA, Terecoasă EO, Băjenaru OA, Tiu C (2017) Etiologic classification of ischemic stroke: where do we stand? Clin Neurol Neurosurg 159:93–106. https://doi.org/10.1016/j.clineuro.2017.05.019

    Article  PubMed  Google Scholar 

  57. Izykenova GA, Balswin R, Oldenburg SJ (2018) Development of novel test platforms for the assessment of brain injury. In: Peplow PV, Dambinova SA, Gennarelli TA, Martinez B (eds) Acute brain impairment: scientific discoveries and translational research. Royal Society of Chemistry, London, pp 315–326. https://doi.org/10.1039/9781788012539-00315

    Chapter  Google Scholar 

  58. Hernandez-Diaz Z, Barroso-Garcia E, González-García S, González-Quevedo A, Reyes-Berazain A, Arteche-Prior M (2017) Confounding imaging findings in subacute-chronic cerebral infarction. Austin J Cerebrovasc Dis Stroke 4(3):1063–1068. ISSN:2381-9103

    Google Scholar 

  59. George MG, Tong X, McGruder H, Yoon P, Rosamond W, Winquist A, Hinchey J, Wall HK, Pandey DK (2009) Paul Coverdell National Acute Stroke Registry Surveillance - four states, 2005–2007. Centers for Disease Control and Prevention (CDC). MMWR Surveill Summ 58(7):1–23. PMID: 19893482

    PubMed  Google Scholar 

  60. Gibson LM, Whiteley W (2013) The differential diagnosis of suspected stroke: a systematic review. J R Coll Physicians Edinb 43(2):114–118. https://doi.org/10.4997/JRCPE.2013.205

    Article  CAS  PubMed  Google Scholar 

  61. González-García S, González-Quevedo A, Hernandez-Diaz Z et al (2017) Circulating autoantibodies against the NR2 peptide of the NMDA receptor are associated with subclinical brain damage in hypertensive patients with other pre-existing conditions for vascular risk. J Neurol Sci 375:324–330. https://doi.org/10.1016/j.jns.2017.02.028

    Article  CAS  PubMed  Google Scholar 

  62. Glober NK, Sporer KA, Guluma KZ, Serra JP, Barger JA, Brown JF, Gilbert iGH, Koenig KL, Rudnick EM, Salvucci AA (2016) Acute stroke: current evidence-based recommendations for prehospital care. West J Emerg Med 17(2):104–128. https://doi.org/10.5811/westjem.2015.12.28995

    Article  PubMed  PubMed Central  Google Scholar 

  63. Abboud ME, Band R, Jia J, Pajerowski W, David G, Guo M, Mechem CC, Messé SR, Carr BG, Mullen MT (2016) Recognition of stroke by EMS is associated with improvement in emergency department quality measures. Prehosp Emerg Care 20(6):729–736. https://doi.org/10.1080/10903127.2016.118260

    Article  PubMed  Google Scholar 

  64. Tong D, Reeves MJ, Hernandez AF, Zhao X, Olson DM, Fonarow GC, Schwamm LH, Smith EE (2012) Times from symptom onset to hospital arrival in the get with the guidelines—stroke program 2002 to 2009: temporal trends and implications. Stroke 43(7):1912–1917. https://doi.org/10.1161/STROKEAHA.111.644963

    Article  PubMed  Google Scholar 

  65. Hsieh F, Turnbull B (1996) Nonparametric and semiparametric estimation of the receiver operating characteristic curve. Ann Stat 24(1):25–40

    Article  Google Scholar 

  66. Lin D, Wei LJ, Ying Z (1993) Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 80(3):557–572

    Article  Google Scholar 

  67. Brunser AM, Hoppe A, Illanes S, Díaz V, Muñoz P, Cárcamo D, Olavarria V, Valenzuela M, Lavados P (2013) Accuracy of diffusion-weighted imaging in the diagnosis of stroke in patients with suspected cerebral infarct. Stroke 44(4):1169–1171. https://doi.org/10.1161/STROKEAHA.111.000527

    Article  PubMed  Google Scholar 

  68. Edlow BL, Hurwitz S, Edlow JA (2017) Diagnosis of DWI-negative acute ischemic stroke: a meta-analysis. Neurology 89(3):256–262. https://doi.org/10.1212/WNL.0000000000004120

    Article  PubMed  PubMed Central  Google Scholar 

  69. Alcántara JP (2014) Diffusion tensor imaging in acute ischemic stroke: the role of anisotropy in determining the time of onset and predicting long-term motor outcome. Ph.D. thesis, University of Girona, Girona, Catalonia. http://hdl.handle.net/10803/132xxx

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendix 1: Case-Report Studies of NR2 Peptide Contents in Patients with Preexisting Conditions

Cardioembolic stroke. A 67-year-old female with prior aortic valve replacement surgery and diabetes mellitus (DM, 227 mg/dL glucose) was admitted to ER within 2 h of stroke onset (NIH stroke score 10) with ischemic lesions in right middle cerebral artery area (cardioembolic subtype) seen on CT (Fig. 3a). The measurement of NR2 peptide assay yielded in 4.71 ng/mL (preliminary cutoff of 0.5 ng/mL) depicted the acute cerebral ischemia.

Atherothrombotic stroke. A 82-year-old male presented with a history of stenosis of right (40%) and occlusion in left carotid artery, motor aphasia, dysphagia, and right hemiparesis (NIH stroke scale 10). He presented within 10 h post-symptom onset and had head CT that showed acute ischemic changes in territory of left middle cerebral artery (thrombotic subtype, Fig. 3b). As a part of an ongoing clinical study a blood sample was taken while he had the neurological deficit and showed elevated NR2 peptide of 2.34 ng/mL.

Stroke of unknown origin in vertebral region. A 52-year-old female patient presented after series of TIA within 2 weeks with last resolved with symptoms of dysarthria and hemihypesthesia within 12 h since onset. The CT was normal, and MRI showed acute lacunar infarct in the posterior-left sections of the Varoliev Bridge of hindbrain with hyperintensities on DWI and T2 (Fig. 3c, d). The major function of Varoliev Bridge is to pass nerve impulses to the cortex and to the spinal cord. NR2 peptide was 1.68 ng/mL and about three times higher than the normal levels in healthy controls.

Stroke due to neurovasculitis. Neurovasculitis and renal disorders may show elevated NR2 biomarker in certain cases due to NMDA receptors response to microvessel inflammation [43]. A 21-year-old woman “crystal” methamphetamine user presented with headaches and visual complaints and a T2-weighted MRI scan showed multiple bilateral subcortical areas of white matter abnormality. This was followed by a worsening in condition that resulted in admission to the hospital with left hemiparesis and delirium. MRI scans after admission showed acute right hemispheric infarction and diffuse vasospasm of cerebral vessels without the beading associated with typical vasculitis on magnetic resonance angiography (Fig. 4a). Initial ischemic lesion in left hemisphere revealed by routine CT (Fig. 4b) progressed further (Fig. 4c). Time course of NR2 peptide obtained in this case showed significant and prolonged elevation within a week suggesting an ongoing ischemic process (Fig. 4d).

Fig. 4
figure 4

Acute stroke due to neurovasculitis. (a) MRA brain on admission depicts vasospasm that creates large areas of the brain with no visible vessels (arrows), (b) routine CT scan on admission, (c) FLAIR shows region of stroke, (d) NR2 peptide monitoring (cutoff of 0.5 ng/mL)

Appendix 2: Case-Report Studies of AMPAR Peptide Contents in Patients with Subcortical Strokes Including Lacunar Lesions

Lacunar strokes. A 43-year-old hypertensive Afro-American woman presented with sudden symptoms of left-sided weakness, incoordination, unsteadiness, cerebellar ataxic dysarthria, and dysphonia. The apparent diffusion coefficient (ADC) sequence shows an acute bilateral pontine infarct (Fig. 5a). Drastically increased NR2 (9.32 ng/mL) and AMPAR (7.03 ng/mL) peptides were detected in the patient’s plasma on admission.

Fig. 5
figure 5

Radiological findings for case reports (AMPAR peptide). (a) ADC sequence of lacunar stroke, (b) CT of acute IS in vertebral basilar area, (c) T2-weighted FLAIR of acute IS after snowboarding accident, (d) FLAIR and T2-weighted images for the same patient with hemorrhagic transformation

Stroke in vertebral basilar area. A 59-year-old Caucasian male patient presented with a history of hypertension and symptoms of left hemiparesis, imbalance during walking, facial asymmetry, and double vision within 15 h after the onset. The CT showed acute infarct in vertebral basilar area with multiple arachnoid cysts in basal nuclei in deep frontal lobe and brainstem (Fig. 5b). The elevated NR2 (1.8 ng/mL) and AMPAR (3.1 ng/mL) peptides were measured compared to that for controls (preliminary cutoffs are 0.5 and 0.4 ng/mL, respectively).

Ischemic stroke after snowboarding accident. The case of multiple concussions resolved in stroke after snowboarding accident with white matter lesions depicted on Fig. 5c. A 22-year-old Caucasian male had a seizure on the day of the accident with following admission to hospital. The transformation from initial normal CT image to subcortical lesions in left hemisphere was observed within the next 48 h and accompanied increased AMPAR peptide (1.6 ng/mL at preliminary cutoff 0.4 ng/mL) and control level of NR2 peptide (0.5 ng/mL) that could be associated with cytotoxic edema formation in subcortical structures with presumably AMPAR localization (Figs. 1b and 5c).

Hemorrhagic transformation. The contusion acquired by a 31-year-old Caucasian woman occurred after a car accident and an impact with a tree. She had acute symptoms of incoordination, low alertness and was hyporeflexic. The subcortical areas of hemorrhage are seen on axial Flair and T2-weighed scans registered on seventh day after the injury (Fig. 5d). AMPAR peptide concentration of 7.2 ng/mL and NR2 peptide of 2.0 ng/mL are measured compared to non-injured controls (0.5–1.0 ng/mL range).

Appendix 3

1.1 Preliminary Critical Values of NR2 Peptide

Samples from apparently healthy males/females (52 M/102 F) and persons (42 M/35 F) with preexisting conditions (Table 2) in the clinically relevant age range of 30–70 years were evaluated using the NR2 peptide assay.

Table 2 The distribution of persons with preexisting conditions for NR2 peptide assay
Table 3 The distribution of NR2 peptide across enrolled population

1.2 AMPAR Peptides Preliminary Reference Values

Total of 128 apparently healthy males/females (75 M/52 F) including 53 persons (28 M/25 F) with preexisting conditions (Table 4) in the clinically relevant age range of 30–70 years included to evaluate reference interval for AMPAR peptide assays.

Table 4 The distribution of persons with preexisting conditions for AMPAR peptide assay
Table 5 The distribution of AMPAR peptides across population investigated

Appendix 4: Sample Size Calculations

The sample size calculation for the first phase is based on the following assumptions:

  1. 1.

    The prevalence rate of ischemic events in the enrolled cohort is 80%.

  2. 2.

    A transformation of each peptide measure is normally distributed for trial participants with and without ischemic events.

It is assumed that the standard deviation for the non-ischemic participant is one and the counterpart for the ischemic participants is d0 without loss of generality. With n participants per time window in the first phase, the following table provides the standard error for the \( {\mathrm{pAUC}}_{0.75}^{0.95} \) estimate for each time window and the standard error of the average \( {\mathrm{pAUC}}_{0.75}^{0.95} \) (displayed in the parenthesis) when the true \( {\mathrm{spAUC}}_{0.75}^{0.95} \) is 0.90.

Results summarized in the Table 6 suggest that a sample size n = 100 per time window is adequate for the first phase of the trial with a power of no less than 86% for the above settings. With n = 100 per time window, the 95% confidence interval for the average \( {\mathrm{spAUC}}_{0.75}^{0.95} \) across the 3-time windows is expected to be (0.84, 0.96), which is sufficiently tight clinically.

Table 6 Power of study calculations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dambinova, S.A., Mullins, J.D., Weissman, J.D., Potapov, A.A. (2020). Glutamate Receptor Peptides as Potential Neurovascular Biomarkers of Acute Stroke. In: Peplow, P.V., Martinez, B., Dambinova, S.A. (eds) Stroke Biomarkers. Neuromethods, vol 147. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9682-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9682-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9681-0

  • Online ISBN: 978-1-4939-9682-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics