Skip to main content

Binding Free Energies of Conformationally Disordered Peptides Through Extensive Sampling and End-Point Methods

  • Protocol
  • First Online:
Book cover Protein Self-Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2039))

Abstract

The ability to obtain binding free energies from molecular simulation techniques provides a valuable support to the interpretation and design of experiments. Among all methods available, the most widely used equilibrium free energy methods range from highly accurate and computationally expensive perturbation theory-based methods, such as free energy perturbation (FEP), or thermodynamic integration (TI), through end-point methods, such as molecular mechanics with generalized Born and surface area solvation (MM/GBSA) or MM/PBSA, when the Poisson–Boltzmann method is used instead of GB, and linear interaction energy (LIE) methods, to scoring functions, which are relatively simple empirical functions widely used as part of molecular docking protocols. Because the use of FEP and TI approaches is restricted to cases where the perturbation leading from an initial to final state is negligible or minimal, their application to cases where large conformational changes are involved between bound and unbound states is rather complex, if not prohibitive in terms of convergence. Here we describe a protocol that involves the use of extensive conformational sampling through molecular dynamics (MD) in combination with end-point methods (MM/GB(PB)SA) with an additional quasi-harmonic entropy component, for the calculation of the relative binding free energies of highly flexible, or intrinsically disordered, peptides to a structured receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signaling and regulation. Nat Rev Mol Cell Biol 16(1):18–29

    Article  CAS  Google Scholar 

  2. Dunker AK, Obradovic Z, Romero P, Garner EC (2000) Intrinsic protein disorder in complete genomes. Genome Inform 11:161–171

    CAS  Google Scholar 

  3. Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579:3346–3354

    Article  CAS  Google Scholar 

  4. Babu M, van der Lee R, de Groot NS, Gsponer J (2011) Intrinsically disordered proteins: regulation and disease. Curr Opin Struct Biol 21:432–440

    Article  CAS  Google Scholar 

  5. Mollica L, Bessa LM, Hanoulle X, Jensen MR, Blackledge M, Schneider R (2016) Binding mechanisms of intrinsically disordered proteins: theory, simulation, and experiment. Front Mol Biosci 3:1–18

    Article  Google Scholar 

  6. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32:1037–1049

    Article  CAS  Google Scholar 

  7. Fadda E (2016) Role of the XPA protein in the NER pathway: a perspective on the function of structural disorder in macromolecular assembly. Comput Struct Biotechnol J 14:78–85

    Article  CAS  Google Scholar 

  8. Fadda E, Nixon MG (2017) The transient manifold structure of the p53 extreme C-terminal domain: insight into disorder, recognition, and binding promiscuity by molecular dynamics simulations. Phys Chem Chem Phys 19:21287–21296

    Article  CAS  Google Scholar 

  9. Wayment-Steele HK, Hernandez CX, Pande VS (2018) Modelling intrinsically disordered protein dynamics as networks of transient secondary structure. bioRxiv. https://doi.org/10.1101/377564

  10. Choi UB, McCann JJ, Weninger KR, Bowen ME (2011) Beyond the random coil: stochastic conformational switching in intrinsically disordered proteins. Structure 19:566–576

    Article  CAS  Google Scholar 

  11. Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J Mol Biol 338:1015–1026

    Article  CAS  Google Scholar 

  12. Salmon L, Nodet G, Ozenne V, Yin G, Jensen MR, Zweckestetter M, Blackledge M (2010) NMR characterization of long-range order in intrinsically disordered proteins. J Am Chem Soc 132:8407–8418

    Article  CAS  Google Scholar 

  13. Tompa P, Szász C, Buday L (2005) Structural disorder throws new light on moonlighting. Trends Biochem Sci 30:484–489

    Article  CAS  Google Scholar 

  14. Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9:S1

    Article  Google Scholar 

  15. Arai M, Sugase K, Dyson HJ, Wright PE (2015) Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proc Natl Acad Sci 112:9614–9619

    Article  CAS  Google Scholar 

  16. Csermely P, Palotai R, Nussinov R (2010) Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem Sci 35:539–546

    Article  CAS  Google Scholar 

  17. Meirovitch H, Cheluvaraja S, White DP (2009) Methods for calculating the entropy and free energy to problems involving protein flexibility and ligand binding. Curr Protein Pept Sci 10:229–243

    Article  CAS  Google Scholar 

  18. Perez A, Morrone JA, Simmerling C, Dill KA (2016) Advances in free-energy-based simulations of protein folding and ligand binding. Curr Opin Struct Biol 36:25–31

    Article  CAS  Google Scholar 

  19. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE III (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  20. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discovery 10:449–461

    Article  CAS  Google Scholar 

  21. Brooks BB, Janežič D, Karplus M (1995) Harmonic analysis of large systems. I. Methodology. J Comput Chem 16:1522–1542

    Article  CAS  Google Scholar 

  22. Schlitter J (1993) Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chem Phys Lett 215:617–621

    Article  CAS  Google Scholar 

  23. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  24. Hilser VJ, Garcia-Moreno EB, Oas TG, Kapp G, Whitten ST (2006) A statistical thermodynamic model of the protein ensemble. Chem Rev 106:1545–1558

    Article  CAS  Google Scholar 

  25. Grünberg R, Nilges M, Leckner J (2006) Flexibility and conformational entropy in protein-protein binding. Structure 14:683–693

    Article  Google Scholar 

  26. Tsodikov OV, Ivanov D, Orelli B, Staresincic L, Shoshani I, Oberman R, Scharer OD, Wagner G, Ellenberger T (2007) Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA. EMBO J 26:4768–4776

    Article  CAS  Google Scholar 

  27. Fadda E (2013) Conformational determinants for the recruitment of ERCC1 by XPA in the nucleotide excision repair (NER) pathway: structure and dynamics of the XPA binding motif. Biophys J 104:2503–2511

    Article  CAS  Google Scholar 

  28. Fadda E (2015) The role of conformational selection in the molecular recognition of the wild type and mutants XPA67-80 peptides by ERCC1. Proteins 83:1341–1351

    Article  CAS  Google Scholar 

  29. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber99SB protein force field. Proteins 78:1950–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Horn HW, Swope WC, Pitera JW, Madura JD, Dick TJ, Hura GL, Head-Gordon T (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120:9665–9678

    Article  CAS  Google Scholar 

  31. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  32. Case DA, Darden TA, Cheatham IIITE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Götz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) Amber 12 reference manual. University of California, San Francisco, CA

    Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) VMD – visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  34. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  35. Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240

    Article  CAS  Google Scholar 

  36. Rauscher S, Gapsys V, Gajda MJ, Zweckstetter M, de Groot BL, Grubmüller H (2015) Structural ensembles of intrinsically disordered proteins depend strongly on force field: a comparison to experiment. J Chem Theory Comput 11:5513–5524

    Article  CAS  Google Scholar 

  37. Robustelli P, Piana S, Shaw DE (2018) Developing a molecular dynamics force field for both folded and disordered protein states. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1800690115

  38. Miller IIIBR, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Fadda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nixon, M.G., Fadda, E. (2019). Binding Free Energies of Conformationally Disordered Peptides Through Extensive Sampling and End-Point Methods. In: McManus, J. (eds) Protein Self-Assembly. Methods in Molecular Biology, vol 2039. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9678-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9678-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9677-3

  • Online ISBN: 978-1-4939-9678-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics