Skip to main content

Obtaining Soft Matter Models of Proteins and their Phase Behavior

  • Protocol
  • First Online:
Protein Self-Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2039))

Abstract

Globular proteins are roughly spherical biomolecules with attractive and highly directional interactions. This microscopic observation motivates describing these proteins as patchy particles: hard spheres with attractive surface patches. Mapping a biomolecule to a patchy model requires simplifying effective protein–protein interactions, which in turn provides a microscopic understanding of the protein solution behavior. The patchy model can indeed be fully analyzed, including its phase diagram. In this chapter, we detail the methodology of mapping a given protein to a patchy model and of determining the phase diagram of the latter. We also briefly describe the theory upon which the methodology is based, provide practical information, and discuss potential pitfalls. Data and scripts relevant to this work have been archived and can be accessed at https://doi.org/10.7924/r4ww7bs1p.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 01 July 2020

    The acknowledgement section text has been updated in the chapter.

References

  1. Chen V, Davis I, Richardson D (2009) KiNG (Kinemage, next generation): a versatile interactive molecular and scientific visualization program. Protein Sci 18(11):2403–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berendsen H, van der Spoel D, van Drunen R (1995) Gromacs: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1):43–56

    Article  CAS  Google Scholar 

  3. Case D, Cerutti D, Cheatham T III, Darden T, Duke R, Giese T, Gohlke H, Goetz A, Greene D, Homeyer N, Izadi S, Kovalenko A, Lee T, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein D, Merz K, Monard G, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe D, Roitberg A, Sagui C, Simmerling C, Botello-Smith W, Swails J, Walker R, Wang J, Wolf R, Wu X, Xiao L, York D, PA K (2017) Amber 2017. Tech. rep., University of California, San Francisco

    Google Scholar 

  4. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Academic, Orlando

    Google Scholar 

  5. Rovigatti L, Russo J, Romano F (2018) How to simulate patchy particles. Eur Phys J E 41(5):59

    Article  PubMed  Google Scholar 

  6. Rovigatti L, Romano F, Russo J (2018) lorenzo-rovigatti/patchyparticles v1.0.1. https://doi.org/10.5281/zenodo.1171695

  7. Fusco D, Headd J, De Simone A, Wang J, Charbonneau P (2014) Characterizing protein crystal contacts and their role in crystallization: rubredoxin as a case study. Soft Matter 10(2):290–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bönisch H, Schmidt C, Bianco P, Ladenstein R (2005) Ultrahigh-resolution study on Pyrococcus abyssi rubredoxin. I. 0.69 Å X-ray structure of mutant W4L/R5S. Acta Crystallogr D 61(7):990–1004

    Article  PubMed  Google Scholar 

  10. Kästner J (2011) Umbrella sampling. Wiley Interdiscip Rev Comput Mol Sci 1(6):932–942

    Article  Google Scholar 

  11. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372(3):774–797

    Article  CAS  PubMed  Google Scholar 

  12. Rostkowski M, Olsson M, Søndergaard C, Jensen J (2011) Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct Biol 11(1):1

    Article  Google Scholar 

  13. Hub J, De Groot B, Van Der Spoel D (2010) g_wham – a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput 6(12):3713–3720

    Article  CAS  Google Scholar 

  14. Kern N, Frenkel D (2003) Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction. J Chem Phys 118(21):9882–9889

    Article  CAS  Google Scholar 

  15. Fusco D, Charbonneau P (2016) Soft matter perspective on protein crystal assembly. Colloids Surf B 137:22–31

    Article  CAS  Google Scholar 

  16. Sear R (1999) Phase behavior of a simple model of globular proteins. J Chem Phys 111(10):4800–4806

    Article  CAS  Google Scholar 

  17. Wentzel N, Gunton J (2008) Effect of solvent on the phase diagram of a simple anisotropic model of globular proteins. J Phys Chem B 112(26):7803–7809

    Article  CAS  PubMed  Google Scholar 

  18. Dixit N, Zukoski C (2002) Crystal nucleation rates for particles experiencing anisotropic interactions. J Chem Phys 117(18):8540–8550

    Article  CAS  Google Scholar 

  19. Vega C, Sanz E, Abascal J, Noya E (2008) Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins. J Phys Condens Matter 20(15):153101

    Article  Google Scholar 

  20. Romano F, Sanz E, Sciortino F (2010) Phase diagram of a tetrahedral patchy particle model for different interaction ranges. J Chem Phys 132(18):184501

    Article  Google Scholar 

  21. Frenkel D, Ladd A (1984) New Monte Carlo method to compute the free energy of arbitrary solids. Application to the FCC and HCP phases of hard spheres. J Chem Phys 81(7):3188–3193

    Article  CAS  Google Scholar 

  22. Riley KF, Hobson MP, Bence SJ (2006) Mathematical methods for physics and engineering: a comprehensive guide. Cambridge University Press, Cambridge

    Book  Google Scholar 

  23. Kofke D (1993) Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation. Mol Phys 78(6):1331–1336

    Article  CAS  Google Scholar 

  24. Kofke D (1993) Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line. J Chem Phys 98(5):4149–4162

    Article  CAS  Google Scholar 

  25. Panagiotopoulos A (1987) Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol Phys 61(4):813–826

    Article  CAS  Google Scholar 

  26. Noro MG, Frenkel D (2000) Extended corresponding-states behavior for particles with variable range attractions. J Chem Phys 113(8):2941–2944

    Article  CAS  Google Scholar 

  27. Blote H, Luijten E, Heringa J (1995) Ising universality in three dimensions: a Monte Carlo study. J Phys A 28(22):6289

    Article  Google Scholar 

  28. Fusco D, Charbonneau P (2013) Crystallization of asymmetric patchy models for globular proteins in solution. Phys Rev E 88(1):012721

    Article  Google Scholar 

  29. Tang Z, Zhang Z, Wang Y, Glotzer S, Kotov N (2006) Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314(5797):274–278

    Article  CAS  PubMed  Google Scholar 

  30. Ye X, Chen J, Engel M, Millan J, Li W, Qi L, Xing G, Collins J, Kagan C, Li J et al. (2013) Competition of shape and interaction patchiness for self-assembling nanoplates. Nat Chem 5(6):466

    Article  CAS  PubMed  Google Scholar 

  31. Glotzer S, Solomon M (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6(8):557

    Article  PubMed  Google Scholar 

  32. Bianchi E, Capone B, Kahl G, Likos C (2015) Soft-patchy nanoparticles: modeling and self-organization. Faraday Discuss 181:123–138

    Article  CAS  PubMed  Google Scholar 

  33. de las Heras D, da Gama M (2016) Temperature (de)activated patchy colloidal particles. J Phys Condens Matter 28(24):244008

    Google Scholar 

  34. Wilber AW, Doye JP, Louis AA, Noya EG, Miller MA, Wong P (2007) Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. J Chem Phys 127(8):08B618

    Google Scholar 

Download references

Acknowledgments

We thank Diana Fusco for guiding discussions. The authors acknowledge support from National Science Foundation Grant no. NSF DMR-1749374. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562, as well as the Duke Compute Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irem Altan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Altan, I., Charbonneau, P. (2019). Obtaining Soft Matter Models of Proteins and their Phase Behavior. In: McManus, J. (eds) Protein Self-Assembly. Methods in Molecular Biology, vol 2039. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9678-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9678-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9677-3

  • Online ISBN: 978-1-4939-9678-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics