Skip to main content

Monitoring Transcription Factor Oligomerization in Single Living Cells by Number and Brightness Analysis

  • Protocol
  • First Online:
Book cover Imaging Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2038))

Abstract

One key step in the activation of inducible transcription factors is their homooligomerization, which can be measured in individual living cells by a fluorescence microscopy technique called Number and Brightness analysis (N&B). In this chapter we describe how to acquire and analyze confocal microscopy time-series to provide information about transcription factor oligomerization in living cells using this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hager GL, McNally JG, Misteli T (2009) Transcription dynamics. Mol Cell 35:741–753. https://doi.org/10.1016/j.molcel.2009.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Perkins ND (2007) Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol 8:49–62. https://doi.org/10.1038/nrm2083

    Article  CAS  PubMed  Google Scholar 

  3. Purvis JE, Karhohs KW, Mock C et al (2012) p53 dynamics control cell fate. Science 336:1440–1444. https://doi.org/10.1126/science.1218351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Funnell APW, Crossley M (2012) Homo- and heterodimerization in transcriptional regulation. Adv Exp Med Biol 747:105–121. https://doi.org/10.1007/978-1-4614-3229-6_7

    Article  CAS  PubMed  Google Scholar 

  5. Kitayner M, Rozenberg H, Kessler N et al (2006) Structural basis of DNA recognition by p53 tetramers. Mol Cell 22:741–753. https://doi.org/10.1016/j.molcel.2006.05.015

    Article  CAS  PubMed  Google Scholar 

  6. Gaglia G, Guan Y, Shah JV, Lahav G (2013) Activation and control of p53 tetramerization in individual living cells. Proc Natl Acad Sci 110:15497–15501. https://doi.org/10.1073/pnas.1311126110

    Article  PubMed  PubMed Central  Google Scholar 

  7. Filtz TM, Vogel WK, Leid M (2014) Regulation of transcription factor activity by interconnected post-translational modifications. Trends Pharmacol Sci 35:76–85. https://doi.org/10.1016/j.tips.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  8. Loffreda A, Jacchetti E, Antunes S et al (2017) Live-cell p53 single-molecule binding is modulated by C-terminal acetylation and correlates with transcriptional activity. Nat Commun 8:313. https://doi.org/10.1038/s41467-017-00398-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu Z, Tjian R (2018) Visualizing transcription factor dynamics in living cells. J Cell Biol 217:1181–1191. https://doi.org/10.1083/jcb.201710038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mueller F, Karpova TS, Mazza D, McNally JG (2012) Monitoring dynamic binding of chromatin proteins in vivo by fluorescence recovery after photobleaching. Methods Mol Biol 833:153–176. https://doi.org/10.1007/978-1-61779-477-3_11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Digman MA, Brown CM, Horwitz AR et al (2008) Paxillin dynamics measured during adhesion assembly and disassembly by correlation spectroscopy. Biophys J 94:2819–2831. https://doi.org/10.1529/biophysj.107.104984

    Article  CAS  PubMed  Google Scholar 

  12. Mazza D, Stasevich TJ, Karpova TS, McNally JG (2012) Monitoring dynamic binding of chromatin proteins in vivo by fluorescence correlation spectroscopy. Methods Mol Biol 833:177–200. https://doi.org/10.1007/978-1-61779-477-3_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mazza D, Ganguly S, McNally JG (2013) Monitoring dynamic binding of chromatin proteins in vivo by single-molecule tracking. Methods Mol Biol. https://doi.org/10.1007/978-1-62703-526-2_9

    Chapter  Google Scholar 

  14. Digman MA, Dalal R, Horwitz AF, Gratton E (2008) Mapping the number of molecules and brightness in the laser scanning microscope. Biophys J 94:2320–2332. https://doi.org/10.1529/biophysj.107.114645

    Article  CAS  PubMed  Google Scholar 

  15. Presman DM, Ganguly S, Schiltz RL et al (2016) DNA binding triggers tetramerization of the glucocorticoid receptor in live cells. Proc Natl Acad Sci 113:8236–8241. https://doi.org/10.1073/pnas.1606774113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Day RN (2014) Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy. Methods 66:200–207. https://doi.org/10.1016/j.ymeth.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  17. Bader AN, Hofman EG, Voortman J et al (2009) Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys J 97:2613–2622. https://doi.org/10.1016/j.bpj.2009.07.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Xing D, Su QP et al (2014) Super-resolution imaging and tracking of protein–protein interactions in sub-diffraction cellular space. Nat Commun 5:4443. https://doi.org/10.1038/ncomms5443

    Article  CAS  PubMed  Google Scholar 

  19. Liesche C, Grußmayer KS, Ludwig M et al (2015) Automated analysis of single-molecule photobleaching data by statistical modeling of spot populations. Biophys J 109:2352–2362. https://doi.org/10.1016/j.bpj.2015.10.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen B, Gilbert LA, Cimini BA et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491. https://doi.org/10.1016/j.cell.2013.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916. https://doi.org/10.1126/science.1068539

    Article  CAS  PubMed  Google Scholar 

  22. Los GV, Encell LP, McDougall MG et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382. https://doi.org/10.1021/cb800025k

    Article  CAS  PubMed  Google Scholar 

  23. Grimm JB, English BP, Chen J et al (2015) A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods 12:244–250. https://doi.org/10.1038/nmeth.3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dalal RB, Digman MA, Horwitz AF et al (2008) Determination of particle number and brightness using a laser scanning confocal microscope operating in the analog mode. Microsc Res Tech 71:69–81. https://doi.org/10.1002/jemt.20526

    Article  PubMed  Google Scholar 

  25. Unruh JR, Gratton E (2008) Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera. Biophys J 95:5385–5398. https://doi.org/10.1529/biophysj.108.130310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nolan R, Iliopoulou M, Alvarez L, Padilla-Parra S (2018) Detecting protein aggregation and interaction in live cells: a guide to number and brightness. Methods 140–141:172–177. https://doi.org/10.1016/j.ymeth.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  27. Hellriegel C, Caiolfa VR, Corti V et al (2011) Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane. FASEB J 25:2883–2897. https://doi.org/10.1096/fj.11-181537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nolan R, Alvarez LAJ, Elegheert J et al (2017) nandb—number and brightness in R with a novel automatic detrending algorithm. Bioinformatics 33:3508–3510. https://doi.org/10.1093/bioinformatics/btx434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Valeria Caiolfa and Dr. Moreno Zamai for their support on N&B analysis. Confocal imaging was carried out in ALEMBIC, an advanced microscopy laboratory established by IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele. This work was supported by Fondazione Cariplo (E.C. and D.M.: 2014-1157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Mazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cammarota, E., Mazza, D. (2019). Monitoring Transcription Factor Oligomerization in Single Living Cells by Number and Brightness Analysis. In: Shav-Tal, Y. (eds) Imaging Gene Expression. Methods in Molecular Biology, vol 2038. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9674-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9674-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9673-5

  • Online ISBN: 978-1-4939-9674-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics