Skip to main content

Visualization of Endogenous Transcription Factors in Single Cells Using an Antibody Electroporation-Based Imaging Approach

  • Protocol
  • First Online:
Imaging Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2038))

Abstract

In this chapter, we describe an antibody electroporation-based imaging approach that allows for precise imaging and quantification of endogenous transcription factor (i.e., RNA Polymerase II) distributions in single cells using 3D structured illumination microscopy (3D-SIM). The labeling is achieved by the efficient and harmless delivery of fluorescent dye-conjugated antibodies into living cells and the specific binding of these antibodies to the targeted factors. Our step-by-step protocol describes the procedure of the labeling of the specific antibodies, their electroporation into living cells, the sample preparation and 3D-SIM imaging as well as the postimaging analyses of the labeled endogenous transcription factors to obtain information about their nuclear distribution as well as their function. This protocol can be applied to a plethora of endogenous nuclear factors by using target specific noninhibiting antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Godin AG, Lounis B, Cognet L (2014) Super-resolution microscopy approaches for live cell imaging. Biophys J 107(8):1777–1784. https://doi.org/10.1016/j.bpj.2014.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ellenberg J, Lippincott-Schwartz J, Presley JF (1999) Dual-colour imaging with GFP variants. Trends Cell Biol 9(2):52–56

    Article  CAS  Google Scholar 

  3. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. https://doi.org/10.1126/science.1127344

    Article  Google Scholar 

  4. Schneider AF, Hackenberger CP (2017) Fluorescent labelling in living cells. Curr Opin Biotechnol 48:61–68. https://doi.org/10.1016/j.copbio.2017.03.012

    Article  CAS  PubMed  Google Scholar 

  5. Burgess A, Lorca T, Castro A (2012) Quantitative live imaging of endogenous DNA replication in mammalian cells. PLoS One 7(9):e45726. https://doi.org/10.1371/journal.pone.0045726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L, Gahl A, Backmann N, Conrath K, Muyldermans S, Cardoso MC, Leonhardt H (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3(11):887–889. https://doi.org/10.1038/nmeth953

    Article  CAS  Google Scholar 

  7. Cassimeris L, Guglielmi L, Denis V, Larroque C, Martineau P (2013) Specific in vivo labeling of tyrosinated alpha-tubulin and measurement of microtubule dynamics using a GFP tagged, cytoplasmically expressed recombinant antibody. PLoS One 8(3):e59812. https://doi.org/10.1371/journal.pone.0059812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Freund G, Desplancq D, Stoessel A, Weinsanto R, Sibler AP, Robin G, Martineau P, Didier P, Wagner J, Weiss E (2014) Generation of an intrabody-based reagent suitable for imaging endogenous proliferating cell nuclear antigen in living cancer cells. J Mol Recognit 27(9):549–558. https://doi.org/10.1002/jmr.2378

    Article  CAS  PubMed  Google Scholar 

  9. Traenkle B, Rothbauer U (2017) Under the microscope: single-domain antibodies for live-cell imaging and super-resolution microscopy. Front Immunol 8:1030. https://doi.org/10.3389/fimmu.2017.01030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Renaud E, Martineau P, Guglielmi L (2017) Solubility characterization and imaging of intrabodies using GFP-fusions. Methods Mol Biol 1575:165–174. https://doi.org/10.1007/978-1-4939-6857-2_9

    Article  CAS  PubMed  Google Scholar 

  11. Manders EM, Kimura H, Cook PR (1999) Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J Cell Biol 144(5):813–821

    Article  CAS  Google Scholar 

  12. Teng KW, Ishitsuka Y, Ren P, Youn Y, Deng X, Ge P, Belmont AS, Selvin PR (2017) Labeling proteins inside living cells using external fluorophores for microscopy. eLife 5. https://doi.org/10.7554/eLife.20378

  13. Courtete J, Sibler AP, Zeder-Lutz G, Dalkara D, Oulad-Abdelghani M, Zuber G, Weiss E (2007) Suppression of cervical carcinoma cell growth by intracytoplasmic codelivery of anti-oncoprotein E6 antibody and small interfering RNA. Mol Cancer Ther 6(6):1728–1735. https://doi.org/10.1158/1535-7163.MCT-06-0808

    Article  CAS  PubMed  Google Scholar 

  14. Conic S, Desplancq D, Ferrand A, Fischer V, Heyer V, Reina San Martin B, Pontabry J, Oulad-Abdelghani M, Babu NK, Wright GD, Molina N, Weiss E, Tora L (2018) Imaging of native transcription factors and histone phosphorylation at high resolution in live cells. J Cell Biol 217(4):1537–1552. https://doi.org/10.1083/jcb.201709153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Freund G, Sibler AP, Desplancq D, Oulad-Abdelghani M, Vigneron M, Gannon J, Van Regenmortel MH, Weiss E (2013) Targeting endogenous nuclear antigens by electrotransfer of monoclonal antibodies in living cells. MAbs 5(4):518–522. https://doi.org/10.4161/mabs.25084

    Article  PubMed  PubMed Central  Google Scholar 

  16. Conic S, Desplancq D, Tora L, Weiss E (2018) Electroporation of labeled antibodies to visualize endogenous proteins and posttranslational modifications in living metazoan cell types. Bio Protoc 8(21). https://doi.org/10.21769/BioProtoc.3069

  17. Desplancq D, Freund G, Conic S, Sibler AP, Didier P, Stoessel A, Oulad-Abdelghani M, Vigneron M, Wagner J, Mely Y, Chatton B, Tora L, Weiss E (2016) Targeting the replisome with transduced monoclonal antibodies triggers lethal DNA replication stress in cancer cells. Exp Cell Res 342(2):145–158. https://doi.org/10.1016/j.yexcr.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  18. Besse S, Vigneron M, Pichard E, Puvion-Dutilleul F (1995) Synthesis and maturation of viral transcripts in herpes simplex virus type 1 infected HeLa cells: the role of interchromatin granules. Gene Expr 4:143–161

    CAS  PubMed  Google Scholar 

  19. Ollion J, Cochennec J, Loll F, Escude C, Boudier T (2013) TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29(14):1840–1841. https://doi.org/10.1093/bioinformatics/btt276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224. (Pt 3:213–232). https://doi.org/10.1111/j.1365-2818.2006.01706.x

    Article  CAS  PubMed  Google Scholar 

  21. Li CH, Lee CK (1993) Minimum cross entropy thresholding. Pattern Recogn 26(4):617–625. https://doi.org/10.1016/0031-3203(93)90115-D

    Article  Google Scholar 

  22. Weiss E, Van Regenmortel MH (1989) Use of rabbit Fab’-peroxidase conjugates prepared by the maleimide method for detecting plant viruses by ELISA. J Virol Methods 24(1–2):11–25

    Article  CAS  Google Scholar 

  23. Brees C, Fransen M (2014) A cost-effective approach to microporate mammalian cells with the Neon Transfection System. Anal Biochem 466:49–50. https://doi.org/10.1016/j.ab.2014.08.017

    Article  CAS  PubMed  Google Scholar 

  24. Ball G, Demmerle J, Kaufmann R, Davis I, Dobbie IM, Schermelleh L (2015) SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci Rep 5:15915. https://doi.org/10.1038/srep15915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from CNRS, INSERM, University of Strasbourg, Ligue Régionale contre le Cancer (CCIRGE-BFC) (to EW), by the European Research Council (ERC) Advanced grant (ERC-2013-340551, Birtoaction) (to LT) and a grant ANR-10-LABX-0030-INRT, a French State fund managed by the Agence Nationale de la Recherche under the frame program Investissements d’Avenir ANR-10-IDEX-0002-02 (to IGBMC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sascha Conic or László Tora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Conic, S., Desplancq, D., Ferrand, A., Molina, N., Weiss, E., Tora, L. (2019). Visualization of Endogenous Transcription Factors in Single Cells Using an Antibody Electroporation-Based Imaging Approach. In: Shav-Tal, Y. (eds) Imaging Gene Expression. Methods in Molecular Biology, vol 2038. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9674-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9674-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9673-5

  • Online ISBN: 978-1-4939-9674-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics