Skip to main content

X-Ray Crystallographic Studies of G-Quadruplex Structures

  • Protocol
  • First Online:
G-Quadruplex Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2035))

Abstract

The application of X-ray crystallographic methods toward a structural understanding of G-quadruplex (G4) motifs at atomic level resolution can provide researchers with exciting opportunities to explore new structural arrangements of putative G4 forming sequences and investigate their recognition by small molecule compounds. The crowded and ordered crystalline environment requires the self-assembly of stable G4 motifs, allowing for an understanding of their inter- and intramolecular interactions in a packed environment, revealing thermodynamically stable topologies. Additionally, crystallographic data derived from these experiments in the form of electron density provides valuable opportunities to visualize various solvent molecules associated with G4s along with the geometries of the metal ions associated within the central channel—elements critical to the understanding G4 stability and topology. Now, with the advent of affordable, commercially sourced and purified synthetic DNA and RNA molecules suitable for immediate crystallization trials, and combined with the availability of specialized and validated crystallization screens, researchers can now undertake in-house crystallization trials without the need for local expertise. When this is combined with access to modern synchrotron platforms that offer complete automation of the data collection process—from the receipt of crystals to delivery of merged and scaled data for the visualization of electron density—the application of X-ray crystallographic techniques is made open to nonspecialist researchers. In this chapter we aim to provide a simple how-to guide to enable the reader to undertake crystallographic experiments involving G4s, encompassing the design of oligonucleotide sequences, fundamentals of the crystallization process and modern strategies used in setting up successful crystallization trials. We will also describe data collection strategies, phasing, electron density visualization, and model building. We will draw on our own experiences in the laboratory and hopefully build an appreciation of the utility of the X-ray crystallographic approaches to investigating G4s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campbell NH, Parkinson GN (2007) Crystallographic studies of quadruplex nucleic acids. Methods (San Diego, Calif) 43(4):252–263. https://doi.org/10.1016/j.ymeth.2007.08.005

    Article  CAS  Google Scholar 

  2. Giege R (2017) What macromolecular crystallogenesis tells us - what is needed in the future. IUCrJ 4(Pt 4):340–349. https://doi.org/10.1107/s2052252517006595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Collie GW, Haider SM, Neidle S, Parkinson GN (2010) A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Res 38(16):5569–5580. https://doi.org/10.1093/nar/gkq259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agilent (2014) CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England

    Google Scholar 

  5. Potterton E, Briggs P, Turkenburg M, Dodson E (2003) A graphical user interface to the CCP4 program suite. Acta Crystallogr Sect D 59(Pt 7):1131–1137

    Article  Google Scholar 

  6. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D 60(Pt 12 Pt 1):2126–2132. https://doi.org/10.1107/s0907444904019158

    Article  Google Scholar 

  7. Keating KS, Pyle AM (2012) RCrane: semi-automated RNA model building. Acta Crystallogr Sect D 68(Pt 8):985–995. https://doi.org/10.1107/s0907444912018549

    Article  CAS  Google Scholar 

  8. Li Z, Lech CJ, Phan AT (2014) Sugar-modified G-quadruplexes: effects of LNA-, 2’F-RNA- and 2’F-ANA-guanosine chemistries on G-quadruplex structure and stability. Nucleic Acids Res 42(6):4068–4079. https://doi.org/10.1093/nar/gkt1312

    Article  CAS  PubMed  Google Scholar 

  9. Sagi J (2014) G-quadruplexes incorporating modified constituents: a review. J Biomol Struct Dyn 32(3):477–511. https://doi.org/10.1080/07391102.2013.775074

    Article  CAS  PubMed  Google Scholar 

  10. Carrasco N, Buzin Y, Tyson E, Halpert E, Huang Z (2004) Selenium derivatization and crystallization of DNA and RNA oligonucleotides for X-ray crystallography using multiple anomalous dispersion. Nucleic Acids Res 32(5):1638–1646. https://doi.org/10.1093/nar/gkh325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin L, Sheng J, Huang Z (2011) Nucleic acid X-ray crystallography via direct selenium derivatization. Chem Soc Rev 40(9):4591–4602. https://doi.org/10.1039/c1cs15020k

    Article  CAS  PubMed  Google Scholar 

  12. Mandal PK, Collie GW, Kauffmann B, Huc I (2014) Racemic DNA crystallography. Angew Chem 53(52):14424–14427. https://doi.org/10.1002/anie.201409014

    Article  CAS  Google Scholar 

  13. Kabsch W (2010) XDS. Acta Crystallogr Sect D 66(Pt 2):125–132. https://doi.org/10.1107/s0907444909047337

    Article  CAS  Google Scholar 

  14. Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG (2011) iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr Sect D 67(Pt 4):271–281. https://doi.org/10.1107/s0907444910048675

    Article  CAS  Google Scholar 

  15. Long F, Vagin AA, Young P, Murshudov GN (2008) BALBES: a molecular-replacement pipeline. Acta Crystallogr Sect D 64(Pt 1):125–132. https://doi.org/10.1107/s0907444907050172

    Article  CAS  Google Scholar 

  16. Wei D, Parkinson GN, Reszka AP, Neidle S (2012) Crystal structure of a c-kit promoter quadruplex reveals the structural role of metal ions and water molecules in maintaining loop conformation. Nucleic Acids Res 40(10):4691–4700. https://doi.org/10.1093/nar/gks023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miyoshi D, Karimata H, Sugimoto N (2007) Hydration regulates the thermodynamic stability of DNA structures under molecular crowding conditions. Nucleosides Nucleotides Nucleic Acids 26(6–7):589–595. https://doi.org/10.1080/15257770701490282

    Article  CAS  PubMed  Google Scholar 

  18. Pan B, Xiong Y, Shi K, Sundaralingam M (2003) Crystal structure of a bulged RNA tetraplex at 1.1 a resolution: implications for a novel binding site in RNA tetraplex. Structure 11(11):1423–1430

    Article  CAS  Google Scholar 

  19. Pan B, Shi K, Sundaralingam M (2006) Base-tetrad swapping results in dimerization of RNA quadruplexes: implications for formation of the i-motif RNA octaplex. Proc Natl Acad Sci U S A 103(9):3130–3134. https://doi.org/10.1073/pnas.0507730103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Campbell N, Collie GW, Neidle S (2012) Crystallography of DNA and RNA G-quadruplex nucleic acids and their ligand complexes. Curr Protoc Nucl Acid Chem Chapter 17:Unit17.16. https://doi.org/10.1002/0471142700.nc1706s50

    Article  Google Scholar 

  21. Viladoms J, Parkinson GN (2014) HELIX: a new modular nucleic acid crystallization screen. J Appl Crystallogr 47(3):948–955. https://doi.org/10.1107/S1600576714007407

    Article  CAS  Google Scholar 

  22. Nicoludis JM, Miller ST, Jeffrey PD, Barrett SP, Rablen PR, Lawton TJ, Yatsunyk LA (2012) Optimized end-stacking provides specificity of N-methyl mesoporphyrin IX for human telomeric G-quadruplex DNA. J Am Chem Soc 134(50):20446–20456. https://doi.org/10.1021/ja3088746

    Article  CAS  PubMed  Google Scholar 

  23. Bowler MW, Nurizzo D, Barrett R, Beteva A, Bodin M, Caserotto H, Delageniere S, Dobias F, Flot D, Giraud T, Guichard N, Guijarro M, Lentini M, Leonard GA, McSweeney S, Oskarsson M, Schmidt W, Snigirev A, von Stetten D, Surr J, Svensson O, Theveneau P, Mueller-Dieckmann C (2015) MASSIF-1: a beamline dedicated to the fully automatic characterization and data collection from crystals of biological macromolecules. J Synchrotron Radiat 22(6):1540–1547. https://doi.org/10.1107/s1600577515016604

    Article  PubMed  PubMed Central  Google Scholar 

  24. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  25. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr Sect D 67(Pt 4):235–242. https://doi.org/10.1107/s0907444910045749

    Article  CAS  Google Scholar 

  26. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40(Pt 4):658–674. https://doi.org/10.1107/s0021889807021206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vagin AA, Steiner RA, Lebedev AA, Potterton L, McNicholas S, Long F, Murshudov GN (2004) REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr Sect D 60(Pt 12 Pt 1):2184–2195. https://doi.org/10.1107/s0907444904023510

    Article  Google Scholar 

  28. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr Sect D 66(Pt 4):486–501. https://doi.org/10.1107/s0907444910007493

    Article  CAS  Google Scholar 

  29. Schuttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr Sect D 60(Pt 8):1355–1363. https://doi.org/10.1107/s0907444904011679

    Article  Google Scholar 

  30. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D 66(Pt 2):213–221. https://doi.org/10.1107/s0907444909052925

    Article  CAS  Google Scholar 

  31. Phan AT, Do NQ (2013) Engineering of interlocked DNA G-quadruplexes as a robust scaffold. Nucleic Acids Res 41(4):2683–2688. https://doi.org/10.1093/nar/gks1304

    Article  CAS  PubMed  Google Scholar 

  32. Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417(6891):876–880. https://doi.org/10.1038/nature755

    Article  CAS  PubMed  Google Scholar 

  33. Haider S, Parkinson GN, Neidle S (2002) Crystal structure of the potassium form of an oxytricha nova G-quadruplex. J Mol Biol 320(2):189–200. https://doi.org/10.1016/s0022-2836(02)00428-x

    Article  CAS  PubMed  Google Scholar 

  34. Wei D, Todd AK, Zloh M, Gunaratnam M, Parkinson GN, Neidle S (2013) Crystal structure of a promoter sequence in the B-raf gene reveals an intertwined dimer quadruplex. J Am Chem Soc 135(51):19319–19329. https://doi.org/10.1021/ja4101358

    Article  CAS  PubMed  Google Scholar 

  35. Collie GW, Campbell NH, Neidle S (2015) Loop flexibility in human telomeric quadruplex small-molecule complexes. Nucleic Acids Res 43(10):4785–4799. https://doi.org/10.1093/nar/gkv427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Collie GW, Promontorio R, Hampel SM, Micco M, Neidle S, Parkinson GN (2012) Structural basis for telomeric G-quadruplex targeting by naphthalene diimide ligands. J Am Chem Soc 134(5):2723–2731. https://doi.org/10.1021/ja2102423

    Article  CAS  PubMed  Google Scholar 

  37. Collie GW, Sparapani S, Parkinson GN, Neidle S (2011) Structural basis of telomeric RNA quadruplex—acridine ligand recognition. J Am Chem Soc 133(8):2721–2728. https://doi.org/10.1021/ja109767y

    Article  CAS  PubMed  Google Scholar 

  38. Parkinson GN, Ghosh R, Neidle S (2007) Structural basis for binding of porphyrin to human telomeres. Biochemistry 46(9):2390–2397. https://doi.org/10.1021/bi062244n

    Article  CAS  PubMed  Google Scholar 

  39. Micco M, Collie GW, Dale AG, Ohnmacht SA, Pazitna I, Gunaratnam M, Reszka AP, Neidle S (2013) Structure-based design and evaluation of naphthalene diimide G-quadruplex ligands as telomere targeting agents in pancreatic cancer cells. J Med Chem 56(7):2959–2974. https://doi.org/10.1021/jm301899y

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary N. Parkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Parkinson, G.N., Collie, G.W. (2019). X-Ray Crystallographic Studies of G-Quadruplex Structures. In: Yang, D., Lin, C. (eds) G-Quadruplex Nucleic Acids. Methods in Molecular Biology, vol 2035. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9666-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9666-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9665-0

  • Online ISBN: 978-1-4939-9666-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics