Skip to main content

Single-Molecule Investigations of G-Quadruplex

  • Protocol
  • First Online:
G-Quadruplex Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2035))

Abstract

The genome-wide occurrence of G-quadruplexes and their demonstrated biological activities call for detailed understanding on the stability and transition kinetics of the structures. Although the core structural element in a G-quadruplex is simple and requires only four tandem repeats of Guanine rich sequences, there is rather rich conformational diversity in this structure. Corresponding to this structural diversity, it displays involved transition kinetics within individual G-quadruplexes and complicated interconversion among different G-quadruplex species. Due to the inherently high signal-to-noise ratio in the measurement, single-molecule tools offer a unique capability to investigate the thermodynamic, kinetic, and mechanical properties of G-quadruplexes with dynamic conformations. In this chapter, we describe different single molecule methods such as atomic-force microscopy (AFM), single-molecule fluorescence resonance energy transfer (smFRET), optical, magnetic, and magneto-optical tweezers to investigate G-quadruplex structures as well as their interactions with small-molecule ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simonsson T (2001) G-quadruplex DNA structures variations on a theme. Biol Chem 382(4):621–628

    Article  CAS  PubMed  Google Scholar 

  2. Laughlan G, Murchie AIH, Norman DG, Moore MH, Moody PCE, Lilley DMJ, Luisi B (1994) The high-resolution crystal structure of a parallel-stranded guanine Tetraplex. Science 265:520–524

    Article  CAS  PubMed  Google Scholar 

  3. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34:5402–5415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dai J, Carver M, Yang D (2008) Polymorphism of human telomeric quadruplex structures. Biochimie 90(8):1172–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Y, Yang D (2012) Sequence, stability, structure of G-quadruplexes and their drug interactions. Current protocols in nucleic acid chemistry/edited by Serge L Beaucage [et al] CHAPTER:Unit17.15–Unit17.15

    Google Scholar 

  6. Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33(9):2908–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fernando H, Reszka AP, Huppert J, Ladame S, Rankin S, Venkitaraman AR, Neidle S, Balasubramanian S (2006) A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene. Biochemistry 45(25):7854–7860

    Article  CAS  PubMed  Google Scholar 

  8. Rizzo A, Salvati E, Porru M, D’Angelo C, Stevens MF, D’Incalci M, Leonetti C, Gilson E, Zupi G, Biroccio A (2009) Stabilization of quadruplex DNA perturbs telomere replication leading to the activation of an ATR-dependent ATM signaling pathway. Nucleic Acids Res 37(16):5353–5364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 99:11593–11598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10(4):261–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang X, Mar V, Zhou W, Harrington L, Robinson MO (1999) Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 13:2388–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rezler EM, Bearss DJ, Hurley LH (2003) Telomere inhibition and telomere disruption as processes for drug targeting. Annu Rev Pharmacol Toxicol 43:359–379

    Article  CAS  PubMed  Google Scholar 

  13. de Armond R, Wood S, Sun D, Hurley LH, Ebbinghaus SW (2005) Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1R promoter. Biochemistry 44:16341–16350

    Article  CAS  PubMed  Google Scholar 

  14. Sun D, Guo K, Rusche JJ, Hurley LH (2005) Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res 33:6070–6080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun D, Hurley LH (2010) Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay. Methods Mol Biol 608:65–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang AYQ, Balasubramanian S (2012) The kinetics and folding pathways of intramolecular G-quadruplex nucleic acids. J Am Chem Soc 134:19297–19308

    Article  CAS  PubMed  Google Scholar 

  17. Bončina M, Lah J, Prislan I, Vesnaver G (2012) Energetic basis of human telomeric DNA folding into G-quadruplex structures. J Am Chem Soc 134(23):9657–9663

    Article  CAS  PubMed  Google Scholar 

  18. Gray RD, Buscaglia R, Chaires JB (2012) Populated intermediates in the thermal unfolding of the human telomeric quadruplex. J Am Chem Soc 134:16834–16844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Limongelli V, De Tito S, Cerofolini L, Fragai M, Pagano B, Trotta R, Cosconati S, Marinelli L, Novellino E, Bertini I, Randazzo A, Luchinat C, Parrinello M (2013) The G-triplex DNA. Angew Chem Int Ed Eng 52:2269–2273

    Article  CAS  Google Scholar 

  20. Sannohe Y, Endo M, Katsuda Y, Hidaka K, Sugiyama H (2010) Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure. J Am Chem Soc 132(46):16311–16313

    Article  CAS  PubMed  Google Scholar 

  21. Ying L, Green JJ, Li H, Klenerman D, Balasubramanian S (2003) Studies on the structure and dynamics of the human telomeric G quadruplex by single-molecule fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 100:14629–14634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee JY, Okumus B, Kim DS, Ha T (2005) Extreme conformational diversity in human telomeric DNA. Proc Natl Acad Sci U S A 102(52):18938–18943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lynch S, Baker H, Byker SG, Zhou D, Sinniah K (2009) Single molecule force spectroscopy on G-quadruplex DNA. Chemistry 15(33):8113–8116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu Z, Schonhoft JD, Dhakal S, Bajracharya R, Hegde R, Basu S, Mao H (2009) ILPR G-quadruplexes formed in seconds demonstrate high mechanical stabilities. J Am Chem Soc 131(5):1876–1882

    Article  CAS  PubMed  Google Scholar 

  25. Schonhoft JD, Das A, Achamyeleh F, Samdani S, Sewell A, Mao H, Basu S (2009) ILPR repeats adopt diverse G-quadruplex conformations that determine insulin binding. Biopolymers 93:21–31

    Article  CAS  Google Scholar 

  26. Li W, Hou X-M, Wang P-Y, Xi X-G, Ming Li M (2013) Direct measurement of sequential folding pathway and energy landscape of human telomeric G-quadruplex structures. J Am Chem Soc 135:6423–6426

    Article  CAS  PubMed  Google Scholar 

  27. Selvam S, Koirala D, Yu Z, Mao H (2014) Quantification of topological coupling between DNA superhelicity and G-quadruplex formation. J Am Chem Soc 136:13967–13970

    Article  CAS  PubMed  Google Scholar 

  28. Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34:2723–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Z, Dai J, Veliath E, Jones RA, Yang D (2010) Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: insights into the interconversion of human telomeric G-quadruplex structures. Nucleic Acids Res 38(3):1009–1021

    Article  CAS  PubMed  Google Scholar 

  30. Hwang H, Buncher N, Opresko PL, Myong S (2012) POT1-TPP1 regulates telomeric overhang structural dynamics. Structure 20(11):1872–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ray S, Bandaria JN, Qureshi MH, Yildiz A, Balci H (2014) G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding. Proc Natl Acad Sci U S A 111(8):2990–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290

    Article  CAS  PubMed  Google Scholar 

  33. Li J-L, Harrison RJ, Reszka AP, Brosh RM, Bohr VA, Neidle S, Hickson ID (2001) Inhibition of the Bloom’s and Werner’s syndrome helicases by G-quadruplex interacting ligands. Biochemistry 40(50):15194–15202

    Article  CAS  PubMed  Google Scholar 

  34. Han H, Bennett R, Hurley L (2000) Inhibition of unwinding of G-quadruplex structures by Sgs1 helicase in the presence of N,N′-Bis[2-(1-piperidino)ethyl]-3,4,9,10-perylenetetracarboxylic diimide, a G-quadruplex-interactive ligand. Biochemistry 39:9311–9316

    Article  CAS  PubMed  Google Scholar 

  35. J-q L, C-y C, Xue Y, Hao Y-h, Tan Z (2010) G-quadruplex hinders translocation of BLM helicase on DNA: a real-time fluorescence spectroscopic unwinding study and comparison with duplex substrates. J Am Chem Soc 132:10521–10527

    Article  CAS  Google Scholar 

  36. de Messieres M, Chang J-C, Brawn-Cinani B, La Porta A (2012) Single-molecule study of G-quadruplex disruption using dynamic force spectroscopy. Phys Rev Lett 109(5):058101

    Article  PubMed  CAS  Google Scholar 

  37. Yu Z, Koirala D, Cui Y, Easterling LF, Zhao Y, Mao H (2012) Click chemistry assisted single-molecule fingerprinting reveals a 3D biomolecular folding funnel. J Am Chem Soc 134(30):12338–12341

    Article  CAS  PubMed  Google Scholar 

  38. Long X, Parks JW, Bagshaw CR, Stone MD (2013) Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy. Nucleic Acids Res 41(4):2746–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. You H, Wu J, Shao F, Yan J (2015) Stability and kinetics of c-MYC promoter G-quadruplexes studied by single-molecule manipulation. J Am Chem Soc 137(7):2424–2427

    Article  CAS  PubMed  Google Scholar 

  40. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801

    Article  CAS  PubMed  Google Scholar 

  41. Porro A, Feuerhahn S, Reichenbach P, Lingner J (2010) Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol Cell Biol 30(20):4808–4817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Garavis M, Bocanegra R, Herrero-Galan E, Gonzalez C, Villasante A, Arias-Gonzalez JR (2013) Mechanical unfolding of long human telomeric RNA (TERRA). Chem Commun 49(57):6397–6399

    Article  CAS  Google Scholar 

  43. Gosse C, Croquette V (2002) Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J 82:3314–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koirala D, Dhakal S, Ashbridge B, Sannohe Y, Rodriguez R, Sugiyama H, Balasubramanian S, Mao H (2011) A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat Chem 3:782–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kouzine F, Liu J, Sanford S, Chung HJ, Levens D (2004) The dynamic response of upstream DNA to transcription-generated torsional stress. Nat Struct Mol Biol 11(11):1092–1100

    Article  CAS  PubMed  Google Scholar 

  46. Drake B, Prater C, Weisenhorn A, Gould S, Albrecht T, Quate C, Cannell D, Hansma H, Hansma P (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243(4898):1586–1589

    Article  CAS  PubMed  Google Scholar 

  47. Xu Y, Ishizuka T, Kurabayashi K, Komiyama M (2009) Consecutive formation of G-quadruplexes in human telomeric-overhang DNA: a protective capping structure for telomere ends. Angew Chem Int Ed Eng 48(42):7833–7836

    Article  CAS  Google Scholar 

  48. Wang H, Nora GJ, Ghodke H, Opresko PL (2011) Single molecule studies of physiologically relevant telomeric tails reveal POT1 mechanism for promoting G-quadruplex unfolding. J Biol Chem 286(9):7479–7489

    Article  CAS  PubMed  Google Scholar 

  49. Oganesian L, Bryan TM (2007) Physiological relevance of telomeric G-quadruplex formation: a potential drug target. BioEssays 29(2):155–165

    Article  CAS  PubMed  Google Scholar 

  50. Galburt EA, Grill SW, Wiedmann A, Lubkowska L, Choy J, Nogales E, Kashlev M, Bustamante C (2007) Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 446:820–823

    Article  CAS  PubMed  Google Scholar 

  51. Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282(5390):902–907

    Article  CAS  PubMed  Google Scholar 

  52. Lane AN, Chaires JB, Gray RD, Trent JO (2008) Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 36:5482–5515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hardin CC, Perry AG, White K (2000) Thermodynamic and kinetic characterization of the dissociation and assembly of quadruplex nucleic acids. Biopolymers 56:147–194

    Article  CAS  PubMed  Google Scholar 

  54. Mergny JL, Gros J, Cian AD, Bourdoncle A, Rosu F, Sacca B, Guittat L (2006) Quadruplex nucleic acids. In: Neidle S, Balasubramanian S (eds) Quadruplex nucleic acids. RSC, Cambridge, p 300

    Google Scholar 

  55. Ghimire C, Park S, Iida K, Yangyuoru P, Otomo H, Yu Z, Nagasawa K, Sugiyama H, Mao H (2014) Direct quantification of loop interaction and π–π stacking for G-quadruplex stability at the submolecular level. J Am Chem Soc 136(44):15537–15544

    Article  CAS  PubMed  Google Scholar 

  56. Bergues-Pupo AE, Arias-Gonzalez JR, Morón MC, Fiasconaro A, Falo F (2015) Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes. Nucleic Acids Res 42:7638–7647

    Article  CAS  Google Scholar 

  57. Kogut M, Kleist C, Czub J (2016) Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad—a common structural unit of G-quadruplex DNA. Nucleic Acids Res 44(7):3020–3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Petraccone L, Pagano B, Giancola C (2012) Studying the effect of crowding and dehydration on DNA G-quadruplexes. Methods 57(1):76–83

    Article  CAS  PubMed  Google Scholar 

  59. Ellis RJ, Minton AP (2003) Cell biology: join the crowd. Nature 425(6953):27–28

    Article  CAS  PubMed  Google Scholar 

  60. Miyoshi D, Karimata H, Sugimoto N (2006) Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions. J Am Chem Soc 128(24):7957–7963

    Article  CAS  PubMed  Google Scholar 

  61. Dhakal S, Cui Y, Koirala D, Ghimire C, Kushwaha S, Yu Z, Yangyuoru PM, Mao H (2013) Structural and mechanical properties of individual human telomeric G-quadruplexes in molecularly crowded solutions. Nucleic Acids Res 41:3915–3923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu H-Y, Shyy S, Wang JC, Liu LF (1988) Transcription generates positively and negatively supercoiled domains in the template. Cell 53(3):433–440

    Article  CAS  PubMed  Google Scholar 

  63. Sun D, Hurley LH (2009) The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-myc promoter: implications for drug targeting and control of gene expression. J Med Chem 52:2863–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tang Y-C, Chang H-C, Roeben A, Wischnewski D, Wischnewski N, Kerner MJ, Hartl FU, Hayer-Hartl M (2006) Structural features of the GroEL-GroES Nano-cage required for rapid folding of encapsulated protein. Cell 125(5):903–914

    Article  CAS  PubMed  Google Scholar 

  65. Brinker A, Pfeifer G, Kerner MJ, Naylor DJ, Hartl FU, Hayer-Hartl M (2001) Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107(2):223–233

    Article  CAS  PubMed  Google Scholar 

  66. Takagi F, Koga N, Takada S (2003) How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations. Proc Natl Acad Sci U S A 100(20):11367–11372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shrestha P, Jonchhe S, Emura T, Hidaka K, Endo M, Sugiyama H, Mao H (2017) Confined space facilitates G-quadruplex formation. Nat Nanotechnol 12(6):582–588

    Article  CAS  PubMed  Google Scholar 

  68. Petraccone L (2013) Higher-order quadruplex structures. In: Chaires JB, Graves D (eds) Quadruplex nucleic acids, Topics in Current Chemistry, vol 330. Springer, Berlin, Heidelberg, pp 23–46

    Chapter  Google Scholar 

  69. Schonhoft JD, Bajracharya R, Dhakal S, Yu Z, Mao H, Basu S (2009) Direct experimental evidence for quadruplex-quadruplex interaction within the human ILPR. Nucleic Acids Res 37:3310–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu Z, Gaerig V, Cui Y, Kang H, Gokhale V, Zhao Y, Hurley LH, Mao H (2012) Tertiary DNA structure in the single-stranded hTERT promoter fragment unfolds and refolds by parallel pathways via cooperative or sequential events. J Am Chem Soc 134(11):5157–5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Selvam S, Yu Z, Mao H (2016) Exploded view of higher order G-quadruplex structures through click-chemistry assisted single-molecule mechanical unfolding. Nucleic Acids Res 44:45–55

    Article  CAS  PubMed  Google Scholar 

  72. Hann E, Kirkpatrick N, Kleanthous C, Smith DA, Radford SE, Brockwell DJ (2007) The effect of protein complexation on the mechanical stability of Im9. Biophys J 92(9):L79–L81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cao Y, Balamurali MM, Sharma D, Li H (2007) A functional single-molecule binding assay via force spectroscopy. Proc Natl Acad Sci U S A 104(40):15677–15681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nguyen T-H, Steinbock LJ, Butt H-J, Helm M, Rd B (2011) Measuring single small molecule binding via rupture forces of a split aptamer. J Am Chem Soc 133(7):2025–2027

    Article  CAS  PubMed  Google Scholar 

  75. Camunas-Soler J, Alemany A, Ritort F (2017) Experimental measurement of binding energy, selectivity, and allostery using fluctuation theorems. Science 355(6323):412–415

    Article  CAS  PubMed  Google Scholar 

  76. Haider SM, Parkinson GN, Neidle S (2003) Structure of a G-quadruplex-ligand complex. J Mol Biol 326:117–125

    Article  CAS  PubMed  Google Scholar 

  77. Kang H-J, Cui Y, Yin H, Scheid A, Hendricks WPD, Schmidt J, Sekulic A, Kong D, Trent JM, Gokhale V, Mao H, Hurley LH (2016) A pharmacological chaperone molecule induces cancer cell death by restoring tertiary DNA structures in mutant hTERT promoters. J Am Chem Soc 138(41):13673–13692

    Article  CAS  PubMed  Google Scholar 

  78. Horn S, Schadendorf D, Kumar R et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339(959–960):959

    Article  CAS  PubMed  Google Scholar 

  79. Huang FW, Hodis E, Mary Jue X, Kryukov GV, Chin L, Garraway LA (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339:957–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu J-R (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85:6622–6626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW (1997) Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev 11:2801–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Punnoose JA, Ma Y, Li Y, Sakuma M, Mandal S, Nagasawa K, Mao H (2017) Adaptive and specific recognition of telomeric G-quadruplexes via polyvalency induced unstacking of binding units. J Am Chem Soc 139:7476–7484

    Article  CAS  Google Scholar 

  83. Besnard E, Babled A, Lapasset L, Milhavet O, Parrinello H, Dantec C, Marin JM, Lemaitre JM (2012) Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 19(8):837–844

    Article  CAS  PubMed  Google Scholar 

  84. Wells RD (2007) Non-B DNA conformations, mutagenesis and disease. Trends Biochem Sci 32(6):271–278

    Article  CAS  PubMed  Google Scholar 

  85. Murat P, Balasubramanian S (2014) Existence and consequences of G-quadruplex structures in DNA. Curr Opin Genet Dev 25:22–29

    Article  CAS  PubMed  Google Scholar 

  86. Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1(4):263–282

    Article  CAS  PubMed  Google Scholar 

  87. Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417(6891):876–880

    Article  CAS  PubMed  Google Scholar 

  88. Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ (2006) Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. J Am Chem Soc 128:9963–9970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dai J, Carver M, Punchihewa C, Jones RA, Yang D (2007) Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res 35(15):4927–4940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dai J, Punchihewa C, Ambrus A, Chen D, Jones RA, Yang D (2007) Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation. Nucleic Acids Res 35(7):2440–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Phan AT, Kuryavyi V, Luu KN, Patel DJ (2007) Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res 35(19):6517–6525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lim KW, Amrane S, Bouaziz S, Xu W, Mu Y, Patel DJ, Luu KN, Phan AT (2009) Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. J Am Chem Soc 131(12):4301–4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Heddi B, Phan AT (2011) Structure of human telomeric DNA in crowded solution. J Am Chem Soc 133(25):9824–9833

    Article  CAS  PubMed  Google Scholar 

  94. Lim KW, Ng VCM, Martín-Pintado N, Heddi B, Phan AT (2013) Structure of the human telomere in Na+ solution: an antiparallel (2+2) G-quadruplex scaffold reveals additional diversity. Nucleic Acids Res 41(22):10556–10562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful for NIH R01CA236350 and NSF1609514 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanbin Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mandal, S., Hoque, M.E., Mao, H. (2019). Single-Molecule Investigations of G-Quadruplex. In: Yang, D., Lin, C. (eds) G-Quadruplex Nucleic Acids. Methods in Molecular Biology, vol 2035. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9666-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9666-7_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9665-0

  • Online ISBN: 978-1-4939-9666-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics