Skip to main content

A DNA Polymerase Stop Assay for Characterization of G-Quadruplex Formation and Identification of G-Quadruplex-Interactive Compounds

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2035))

Abstract

Guanine-rich DNA sequences are able to spontaneously fold into G-quadruplex structures in the presence of certain metal cations. In the human genome, the majority of DNA G-quadruplexes form at the telomeres and regulatory regions of cancer-related genes. The formation of these structures is implicated in nuclear processes involving DNA, including transcription, DNA replication, and DNA repair. In the past few decades, small molecules which can stabilize these structures have been shown to suppress the telomere extension and to inhibit oncogene transcription. Therefore, DNA G-quadruplexes are thought to be attractive targets for new anticancer therapies. In this chapter, we describe step by step a DNA polymerase extension method for the characterization of G-quadruplex formation and identification of G-quadruplex-interactive compounds. This method is based on the principle that DNA polymerase is incapable to resolve G-quadruplex structure and pauses at 3′-end of the G-quadruplex forming region when it transverses to the 5′-end of the template. Results from the DNA polymerase stop assay can provide the basis for further studies aimed at elucidating the major G-quadruplexes formed by sequences consisting of more than four runs of contiguous guanines, as well as the specificity of G-quadruplex-interactive molecules in binding different G-quadruplex topologies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A (18):11593–11598

    Article  CAS  Google Scholar 

  2. Gray LT, Vallur AC, Eddy J, Maizels N (2014) G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD. Nat Chem Biol 10:313–318

    Article  CAS  Google Scholar 

  3. Hansel-Hertsch R, Beraldi D, Lensing SV, Marsico G, Zyner K, Parry A, Di Antonio M, Pike J, Kimura H, Narita M, Tannahill D, Balasubramanian S (2016) G-quadruplex structures mark human regulatory chromatin. Nat Genet 48:1267–1272

    Article  CAS  Google Scholar 

  4. Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–366

    Article  CAS  Google Scholar 

  5. Rodriguez R, Miller KM, Forment JV, Bradshaw CR, Nikan M, Britton S, Oelschlaegel T, Xhemalce B, Balasubramanian S, Jackson SP (2012) Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol 8:301–310

    Article  CAS  Google Scholar 

  6. Zimmer J, Tacconi EMC, Folio C, Badie S, Porru M, Klare K, Tumiati M, Markkanen E, Halder S, Ryan A, Jackson SP, Ramadan K, Kuznetsov SG, Biroccio A, Sale JE, Tarsounas M (2016) Targeting BRCA1 and BRCA2 deficiencies with G-quadruplex-interacting compounds. Mol Cell 61:449–460

    Article  CAS  Google Scholar 

  7. Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13:770–780

    Article  CAS  Google Scholar 

  8. Chen Y, Yang D (2012) Sequence, stability, and structure of G-quadruplexes and their interactions with drugs. Curr Protoc Nucleic Acid Chem Chapter 17:Unit17 15

    Google Scholar 

  9. Brooks TA, Hurley LH (2009) The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics. Nat Rev Cancer 9:849–861

    Article  CAS  Google Scholar 

  10. Brown RV, Danford FL, Gokhale V, Hurley LH, Brooks TA (2011) Demonstration that drug-targeted down-regulation of MYC in non-Hodgkins lymphoma is directly mediated through the promoter G-quadruplex. J Biol Chem 286:41018–41027

    Article  CAS  Google Scholar 

  11. Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O′Neil NJ, Santos ND, Silvester J, Wei V, Garcia J, Kabeer F, Lai D, Soriano P, Banath J, Chiu DS, Yap D, Le DD, Ye FB, Zhang A, Thu K, Soong J, Lin SC, Tsai AH, Osako T, Algara T, Saunders DN, Wong J, Xian J, Bally MB, Brenton JD, Brown GW, Shah SP, Cescon D, Mak TW, Caldas C, Stirling PC, Hieter P, Balasubramanian S, Aparicio S (2017) CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun 8:14432

    Google Scholar 

  12. Han H, Hurley LH, Salazar M (1999) A DNA polymerase stop assay for G-quadruplex-interactive compounds. Nucleic Acids Res 27(2):537–542

    Article  CAS  Google Scholar 

  13. Brown RV, Wang T, Chappeta VR, Wu G, Onel B, Chawla R, Quijada H, Camp SM, Chiang ET, Lassiter QR, Lee C, Phanse S, Turnidge MA, Zhao P, Garcia JGN, Gokhale V, Yang D, Hurley LH (2017) The consequences of overlapping G-quadruplexes and i-motifs in the platelet-derived growth factor receptor beta core promoter nuclease hypersensitive element can explain the unexpected effects of mutations and provide opportunities for selective targeting of both structures by small molecules to downregulate gene expression. J Am Chem Soc 139:7456–7475

    Article  CAS  Google Scholar 

  14. Qin Y, Fortin JS, Tye D, Gleason-Guzman M, Brooks TA, Hurley LH (2010) Molecular cloning of the human PDGFR-β promoter and drug targeting of the G-quadruplex-forming region to repress PDGFR-β expression. Biochemistry 49:4208–4219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health, R01CA122952 (Danzhou Yang), R01CA177585 (Danzhou Yang), and P30CA023168 (Purdue Center for Cancer Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyong Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, G., Han, H. (2019). A DNA Polymerase Stop Assay for Characterization of G-Quadruplex Formation and Identification of G-Quadruplex-Interactive Compounds. In: Yang, D., Lin, C. (eds) G-Quadruplex Nucleic Acids. Methods in Molecular Biology, vol 2035. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9666-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9666-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9665-0

  • Online ISBN: 978-1-4939-9666-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics