Skip to main content

MALDI Imaging Mass Spectrometry: Neurochemical Imaging of Proteins and Peptides

  • Protocol
  • First Online:
Book cover Neuroproteomics

Part of the book series: Neuromethods ((NM,volume 146))

Abstract

The central nervous system (CNS) constitutes the most intricate tissue in the human body. Neurological diseases, in particular, have a complex pathophysiology and are heterogeneous in their pathological and clinical presentation and therefore poorly understood on a molecular level. Increased insight in molecular CNS disease pathophysiology relates directly to the advancement of novel bioanalytical technologies that allow highly resolved, sensitive, specific, and comprehensive molecular analysis and molecular imaging in complex biological tissues, and in the CNS in particular. Imaging mass spectrometry (IMS) is an emerging technique for molecular imaging, characterized by its high molecular specificity and is therefore a powerful approach for investigating molecular localization patterns in CNS-derived tissue and cells. Over the last 20 years, IMS has been demonstrated to be a promising technology for chemical imaging in biochemical studies, but its application in clinical research is still in its infancy. The goal of this chapter is to provide the reader with a detailed step-by-step guide through the IMS workflow for the successful replication of published experimental data. Moreover, the aim is to give a concise overview of the major developments and applications of matrix-assisted laser desorption ionization (MALDI) based imaging mass spectrometry for neurochemical profiling with particular focus on protein and peptide imaging in neurodegenerative disease pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 Daltons. Anal Chem 60(20):2299–2301

    Article  CAS  PubMed  Google Scholar 

  2. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science 246(4926):64–71

    Article  CAS  PubMed  Google Scholar 

  3. McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26(4):606–643. https://doi.org/10.1002/mas.20124

    Article  CAS  PubMed  Google Scholar 

  4. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4(10):828–833. https://doi.org/10.1038/nmeth1094

    Article  CAS  PubMed  Google Scholar 

  5. Hanrieder J, Malmberg P, Ewing AG (2015) Spatial neuroproteomics using imaging mass spectrometry. Biochim Biophys Acta 1854(7):718–731. https://doi.org/10.1016/j.bbapap.2014.12.026

    Article  CAS  PubMed  Google Scholar 

  6. Hanrieder J, Phan NT, Kurczy ME, Ewing AG (2013) Imaging mass spectrometry in neuroscience. ACS Chem Neurosci 4(5):666–679. https://doi.org/10.1021/cn400053c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seeley EH, Caprioli RM (2008) Molecular imaging of proteins in tissues by mass spectrometry. Proc Natl Acad Sci U S A 105(47):18126–18131. https://doi.org/10.1073/pnas.0801374105

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vickerman JC (2011) Molecular imaging and depth profiling by mass spectrometry--SIMS, MALDI or DESI? Analyst 136(11):2199–2217. https://doi.org/10.1039/c1an00008j

    Article  CAS  PubMed  Google Scholar 

  9. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473. https://doi.org/10.1126/science.1104404

    Article  CAS  PubMed  Google Scholar 

  10. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69(23):4751–4760

    Article  CAS  PubMed  Google Scholar 

  11. Gustafsson JO, Oehler MK, McColl SR, Hoffmann P (2010) Citric acid antigen retrieval (CAAR) for tryptic peptide imaging directly on archived formalin-fixed paraffin-embedded tissue. J Proteome Res 9(9):4315–4328. https://doi.org/10.1021/pr9011766

    Article  CAS  PubMed  Google Scholar 

  12. Meding S, Martin K, Gustafsson OJ, Eddes JS, Hack S, Oehler MK, Hoffmann P (2013) Tryptic peptide reference data sets for MALDI imaging mass spectrometry on formalin-fixed ovarian cancer tissues. J Proteome Res 12(1):308–315. https://doi.org/10.1021/pr300996x

    Article  CAS  PubMed  Google Scholar 

  13. Goodwin RJA, Dungworth JC, Cobb SR, Pitt AR (2008) Time-dependent evolution of tissue markers by MALDI-MS imaging. Proteomics 8(18):3801–3808. https://doi.org/10.1002/pmic.200800201

    Article  CAS  PubMed  Google Scholar 

  14. Goodwin RJA, Lang AM, Allingham H, Boren M, Pitt AR (2010) Stopping the clock on proteomic degradation by heat treatment at the point of tissue excision. Proteomics 10(9):1751–1761. https://doi.org/10.1002/pmic.200900641

    Article  CAS  PubMed  Google Scholar 

  15. Goodwin RJA, Nilsson A, Borg D, Langridge-Smith PRR, Harrison DJ, Mackay CL, Iverson SL, Andren PE (2012) Conductive carbon tape used for support and mounting of both whole animal and fragile heat-treated tissue sections for MALDI MS imaging and quantitation. J Proteomics 75(16):4912–4920. https://doi.org/10.1016/j.jprot.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  16. Hanrieder J, Ljungdahl A, Andersson M (2012) MALDI imaging mass spectrometry of neuropeptides in Parkinson’s disease. J Vis Exp (60). https://doi.org/10.3791/3445

  17. Shariatgorji M, Kallback P, Gustavsson L, Schintu N, Svenningsson P, Goodwin RJA, Andren PE (2012) Controlled-pH tissue cleanup protocol for signal enhancement of small molecule drugs analyzed by MALDI-MS imaging. Anal Chem 84(10):4603–4607. https://doi.org/10.1021/ac203322q

    Article  CAS  PubMed  Google Scholar 

  18. Seeley EH, Oppenheimer SR, Mi D, Chaurand P, Caprioli RM (2008) Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J Am Soc Mass Spectrom 19(8):1069–1077. https://doi.org/10.1016/j.jasms.2008.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martin-Lorenzo M, Balluff B, Sanz-Maroto A, van Zeijl RJ, Vivanco F, Alvarez-Llamas G, McDonnell LA (2014) 30mum spatial resolution protein MALDI MSI: in-depth comparison of five sample preparation protocols applied to human healthy and atherosclerotic arteries. J Proteomics 108:465–468. https://doi.org/10.1016/j.jprot.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  20. Stoeckli M, Staab D, Wetzel M, Brechbuehl M (2014) iMatrixSpray: a free and open source sample preparation device for mass spectrometric imaging. Chimia (Aarau) 68(3):146–149. https://doi.org/10.2533/chimia.2014.146

    Article  CAS  Google Scholar 

  21. Aerni HR, Cornett DS, Caprioli RM (2006) Automated acoustic matrix deposition for MALDI sample preparation. Anal Chem 78(3):827–834. https://doi.org/10.1021/ac051534r

    Article  CAS  PubMed  Google Scholar 

  22. Hanrieder J, Ljungdahl A, Falth M, Mammo SE, Bergquist J, Andersson M (2011) L-DOPA-induced dyskinesia is associated with regional increase of striatal dynorphin peptides as elucidated by imaging mass spectrometry. Mol Cell Proteomics 10(10):M111.009308. https://doi.org/10.1074/mcp.M111.009308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang J, Caprioli RM (2011) Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal Chem 83(14):5728–5734. https://doi.org/10.1021/ac200998a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Puolitaival SM, Burnum KE, Cornett DS, Caprioli RM (2008) Solvent-free matrix dry-coating for MALDI imaging of phospholipids. J Am Soc Mass Spectrom 19(6):882–886. https://doi.org/10.1016/j.jasms.2008.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Graham DJ, Castner DG (2012) Multivariate analysis of ToF-SIMS data from multicomponent systems: the why, when, and how. Biointerphases 7(1–4):49. https://doi.org/10.1007/s13758-012-0049-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Henderson A, Fletcher JS, Vickerman JC (2009) A comparison of PCA and MAF for ToF-SIMS image interpretation. Surf Interface Anal 41(8):666–674. https://doi.org/10.1002/sia.3084

    Article  CAS  Google Scholar 

  27. Deininger S-O, Ebert MP, Fuetterer A, Gerhard M, Roecken C (2008) MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. J Proteome Res 7(12):5230–5236. https://doi.org/10.1021/pr8005777

    Article  CAS  PubMed  Google Scholar 

  28. Kaya I, Michno W, Brinet D, Iacone Y, Zanni G, Blennow K, Zetterberg H, Hanrieder J (2017) Histology-compatible MALDI mass spectrometry based imaging of neuronal lipids for subsequent immunofluorescent staining. Anal Chem 89(8):4685–4694. https://doi.org/10.1021/acs.analchem.7b00313

    Article  CAS  PubMed  Google Scholar 

  29. Groseclose MR, Andersson M, Hardesty WM, Caprioli RM (2007) Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J Mass Spectrom 42(2):254–262. https://doi.org/10.1002/jms.1177

    Article  CAS  PubMed  Google Scholar 

  30. Andersson M, Groseclose MR, Deutch AY, Caprioli RM (2008) Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat Methods 5(1):101–108. https://doi.org/10.1038/nmeth1145

    Article  CAS  PubMed  Google Scholar 

  31. Hanrieder J, Ekegren T, Andersson M, Bergquist J (2012) MALDI imaging mass spectrometry of human post mortem spinal cord in amyotrophic lateral sclerosis. J Neurochem 124:695–707. https://doi.org/10.1111/jnc.12019

    Article  CAS  Google Scholar 

  32. Debois D, Bertrand V, Quinton L, De Pauw-Gillet MC, De Pauw E (2010) MALDI-in source decay applied to mass spectrometry imaging: a new tool for protein identification. Anal Chem 82(10):4036–4045. https://doi.org/10.1021/ac902875q

    Article  CAS  PubMed  Google Scholar 

  33. Kiss A, Smith DF, Reschke BR, Powell MJ, Heeren RM (2014) Top-down mass spectrometry imaging of intact proteins by laser ablation ESI FT-ICR MS. Proteomics 14(10):1283–1289. https://doi.org/10.1002/pmic.201300306

    Article  CAS  PubMed  Google Scholar 

  34. Skold K, Svensson M, Kaplan A, Bjorkesten L, Astrom J, Andren PE (2002) A neuroproteomic approach to targeting neuropeptides in the brain. Proteomics 2(4):447–454. https://doi.org/10.1002/1615-9861(200204)2:4<447::aid-prot447>3.0.co;2-a

    Article  CAS  PubMed  Google Scholar 

  35. Svensson M, Skold K, Svenningsson P, Andren PE (2003) Peptidomics-based discovery of novel neuropeptides. J Proteome Res 2(2):213–219

    Article  CAS  PubMed  Google Scholar 

  36. Svensson M, Skold K, Nilsson A, Falth M, Svenningsson P, Andren PE (2007) Neuropeptidomics: expanding proteomics downwards. Biochem Soc Trans 35(Pt 3):588–593. https://doi.org/10.1042/bst0350588

    Article  CAS  PubMed  Google Scholar 

  37. Che FY, Lim J, Pan H, Biswas R, Fricker LD (2005) Quantitative neuropeptidomics of microwave-irradiated mouse brain and pituitary. Mol Cell Proteomics 4(9):1391–1405. https://doi.org/10.1074/mcp.T500010-MCP200

    Article  CAS  PubMed  Google Scholar 

  38. Fricker LD (2007) Neuropeptidomics to study peptide processing in animal models of obesity. Endocrinology 148(9):4185–4190. https://doi.org/10.1210/en.2007-0123

    Article  CAS  PubMed  Google Scholar 

  39. Yin P, Hou X, Romanova EV, Sweedler JV (2011) Neuropeptidomics: mass spectrometry-based qualitative and quantitative analysis. Methods Mol Biol 789:223–236. https://doi.org/10.1007/978-1-61779-310-3_14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368(9533):387–403. https://doi.org/10.1016/s0140-6736(06)69113-7

    Article  CAS  PubMed  Google Scholar 

  41. Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501(7465):45–51. https://doi.org/10.1038/nature12481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5(1):107

    Article  CAS  PubMed  Google Scholar 

  43. Ljungdahl A, Hanrieder J, Faelth M, Bergquist J, Andersson M (2011) Imaging mass spectrometry reveals elevated nigral levels of dynorphin neuropeptides in L-DOPA-induced dyskinesia in rat model of Parkinson’s disease. PLoS One 6(9):e25653. https://doi.org/10.1371/journal.pone.0025653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Skold K, Svensson M, Nilsson A, Zhang XQ, Nydahl K, Caprioli RM, Svenningsson P, Andren PE (2006) Decreased striatal levels of PEP-19 following MPTP lesion in the mouse. J Proteome Res 5(2):262–269. https://doi.org/10.1021/pr050281f

    Article  CAS  PubMed  Google Scholar 

  45. Stauber J, Lemaire R, Franck J, Bonnel D, Croix D, Day R, Wisztorski M, Fournier I, Salzet M (2008) MALDI imaging of formalin-fixed paraffin-embedded tissues: application to model animals of Parkinson disease for biomarker hunting. J Proteome Res 7(3):969–978. https://doi.org/10.1021/pr070464x

    Article  CAS  PubMed  Google Scholar 

  46. Stoeckli M, Staab D, Staufenbiel M, Wiederhold KH, Signor L (2002) Molecular imaging of amyloid beta peptides in mouse brain sections using mass spectrometry. Anal Biochem 311(1):33–39

    Article  CAS  PubMed  Google Scholar 

  47. Carlred L, Michno W, Kaya I, Sjovall P, Syvanen S, Hanrieder J (2016) Probing amyloid-beta pathology in transgenic Alzheimer’s disease (tgArcSwe) mice using MALDI imaging mass spectrometry. J Neurochem 138(3):469–478. https://doi.org/10.1111/jnc.13645

    Article  CAS  PubMed  Google Scholar 

  48. Kvartsberg H, Duits FH, Ingelsson M, Andreasen N, Ohrfelt A, Andersson K, Brinkmalm G, Lannfelt L, Minthon L, Hansson O, Andreasson U, Teunissen CE, Scheltens P, Van der Flier WM, Zetterberg H, Portelius E, Blennow K (2015) Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease. Alzheimers Dement 11(10):1180–1190. https://doi.org/10.1016/j.jalz.2014.10.009

    Article  PubMed  Google Scholar 

  49. Kakuda N, Miyasaka T, Iwasaki N, Nirasawa T, Wada-Kakuda S, Takahashi-Fujigasaki J, Murayama S, Ihara Y, Ikegawa M (2017) Distinct deposition of amyloid-beta species in brains with Alzheimer’s disease pathology visualized with MALDI imaging mass spectrometry. Acta Neuropathol Commun 5(1):73. https://doi.org/10.1186/s40478-017-0477-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaya I, Brinet D, Michno W, Başkurt M, Zetterberg H, Blenow K, Hanrieder J (2017) Novel Trimodal MALDI imaging mass spectrometry (IMS3) at 10 μm reveals patial lipid and peptide correlates implicated in Aβ plaque pathology in Alzheimer’s disease. ACS Chem Neurosci 8(12):2778–2790. https://doi.org/10.1021/acschemneuro.7b00314

    Article  CAS  PubMed  Google Scholar 

  51. Kaya I, Zetterberg H, Blennow K, Hanrieder J (2018) Shedding light on the molecular pathology of amyloid plaques in transgenic Alzheimer’s disease mice using multimodal MALDI imaging mass spectrometry. ACS Chem Neurosci 18;9(7):1802–1817. https://doi.org/10.1021/acschemneuro.8b00121

    Article  CAS  Google Scholar 

  52. Michno W, Nyström S, Wehrli P, Lashley T, Brinkmalm G, Guerard L, Syvänen S, Sehlin D, Kaya I, Brinet D, Nilsson KPR, Hammarström P, Blennow K, Zetterberg H, anrieder J (2019) Pyroglutamation of amyloid-βx-42 (Aβx-42) followed by Aβ1-40 deposition underlies plaque polymorphism in progressing Alzheimer’s disease pathology. J Biol Chem 294(17):6719–6732. https://doi.org/10.1074/jbc.RA118.006604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding was provided by The Swedish Research Council VR (no. 2014-6447 and no.2018-02181, J.H.; no. 2013-2546, H.Z.; no. 2017-00915, K.B.), Alzheimerfonden (J.H., K.B.), Hjärnfonden (K.B.), Åke Wiberg Stiftelse (J.H.), Ahlén Stiftelsen (J.H.), Stiftelsen Gamla Tjänarinnor (J.H., H.Z., K.B.), Torsten Söderberg Foundation (K.B.), the Knut and Alice Wallenberg Foundation (H.Z.), and the European Research Council (681712, H.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Hanrieder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hanrieder, J., Zetterberg, H., Blennow, K. (2019). MALDI Imaging Mass Spectrometry: Neurochemical Imaging of Proteins and Peptides. In: Li, K. (eds) Neuroproteomics. Neuromethods, vol 146. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9662-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9662-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9661-2

  • Online ISBN: 978-1-4939-9662-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics