Skip to main content

Measuring Microglial Turnover in the Adult Brain

  • Protocol
  • First Online:
Microglia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2034))

Abstract

Microglia are the main resident immunocompetent cells of the brain with key roles in brain development, homeostasis, and function. Recent reports have started to shed light on the homeostatic mechanisms regulating the composition and turnover of the microglial population under physiological conditions from development to ageing, but our knowledge of the dynamics of microglia is incomplete. Therefore, it appears relevant to provide a standardized approach to quantify the turnover of microglia, with direct application to create a greater understanding of the dynamics of this cell population, and how it may contribute to the pathogenesis and/or progression of neurological disorders. Here we describe a robust immunohistochemical method to analyze microglial proliferation in mouse brain, aiming at providing a shared and universal approach to analyze microglial dynamics across different laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. https://doi.org/10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543

    Article  CAS  PubMed  Google Scholar 

  3. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553

    Article  CAS  PubMed  Google Scholar 

  4. Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48(2):405–415

    Article  CAS  PubMed  Google Scholar 

  5. Askew K, Gomez-Nicola D (2017) A story of birth and death: insights into the formation and dynamics of the microglial population. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2017.03.009

    Article  PubMed  Google Scholar 

  6. Tay TL, Mai D, Dautzenberg J, Fernandez-Klett F, Lin G, Sagar, Datta M, Drougard A, Stempfl T, Ardura-Fabregat A, Staszewski O, Margineanu A, Sporbert A, Steinmetz LM, Pospisilik JA, Jung S, Priller J, Grun D, Ronneberger O, Prinz M (2017) A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 20(6):793–803. https://doi.org/10.1038/nn.4547

    Article  CAS  PubMed  Google Scholar 

  7. Eyo UB, Mo M, Yi MH, Murugan M, Liu J, Yarlagadda R, Margolis DJ, Xu P, Wu LJ (2018) P2Y12R-dependent translocation mechanisms gate the changing microglial landscape. Cell Rep 23(4):959–966. https://doi.org/10.1016/j.celrep.2018.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duque A, Rakic P (2015) Identification of proliferating and migrating cells by BrdU and other thymidine analogs: benefits and limitations. NeuroMethods 101:123–139. https://doi.org/10.1007/978-1-4939-2313-7_7

    Article  CAS  Google Scholar 

  9. Bannigan J, Langman J (1979) The cellular effect of 5-bromodeoxyuridine on the mammalian embryo. J Embryol Exp Morphol 50:123–135

    CAS  PubMed  Google Scholar 

  10. Webster W, Shimada M, Langman J (1973) Effect of fluorodeoxyuridine, colcemid, and bromodeoxyuridine on developing neocortex of the mouse. Am J Anat 137:67–85

    Article  CAS  PubMed  Google Scholar 

  11. Mandyam CD, Harburg GC, Eisch AJ (2007) Determination of key aspects of precursor cell proliferation, cell cycle length and kinetics in the adult mouse subgranular zone. Neuroscience 146(1):108–122. https://doi.org/10.1016/j.neuroscience.2006.12.064

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors were funded by Medical Research Council (MR/K022687/1, MR/P024572/1), and a University of Southampton Vice-Chancellor PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Gomez-Nicola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gomez-Nicola, D., Fryatt, G.L., Askew, K.E. (2019). Measuring Microglial Turnover in the Adult Brain. In: Garaschuk, O., Verkhratsky, A. (eds) Microglia. Methods in Molecular Biology, vol 2034. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9658-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9658-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9657-5

  • Online ISBN: 978-1-4939-9658-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics