Skip to main content

Long-Term In Vivo Imaging of Individual Microglial Cells

  • Protocol
  • First Online:
Microglia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2034))

  • 3053 Accesses

Abstract

Microglia are morphologically dynamic cells, neatly arranged in an interconnected three-dimensional lattice throughout the brain, constantly surveying the parenchyma, and swiftly responding to a variety of external stimuli. Capturing the dynamics of their morphology, reaction to trauma, pathogens, or endogenous stimuli, and studying changes in their network in their physiological environment requires the use of two-photon microscopy, as well as a precise repositioning strategy. Herein, we describe a robust repeatable localization method, coupled with optimized in vivo two-photon microscopy for long-term imaging of single microglia cells in the mouse brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hefendehl JK, Neher JJ, Sühs RB et al (2014) Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell. https://doi.org/10.1111/acel.12149

    Article  Google Scholar 

  2. Clayton KA, Van Enoo AA, Ikezu T (2017) Alzheimer’s disease: the role of microglia in brain homeostasis and proteopathy. Front Neurosci. https://doi.org/10.3389/fnins.2017.00680

  3. Condello C, Yuan P, Grutzendler J (2017) Microglia-mediated neuroprotection, TREM2, and Alzheimer’s disease: evidence from optical imaging. Biol Psychiatry. https://doi.org/10.1016/j.biopsych.2017.10.007

    Article  CAS  Google Scholar 

  4. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. https://doi.org/10.1038/nbt899

    Article  CAS  Google Scholar 

  5. Hierro-Bujalance C, Bacskai BJ, Garcia-Alloza M (2018) In vivo imaging of microglia with multiphoton microscopy. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2018.00218

  6. Füger P, Hefendehl JK, Veeraraghavalu K et al (2017) Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci 20:1371–1376. https://doi.org/10.1038/nn.4631

    Article  CAS  PubMed  Google Scholar 

  7. Becker W, Su B, Holub O, weisshart K (2011) FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors. Microsc Res Tech 74:804–811. https://doi.org/10.1002/jemt.20959

    Article  CAS  PubMed  Google Scholar 

  8. Park J-H, Sun W, Cui M (2015) High-resolution in vivo imaging of mouse brain through the intact skull. Proc Natl Acad Sci 112:9236–9241. https://doi.org/10.1073/pnas.1505939112

    Article  CAS  PubMed  Google Scholar 

  9. Hefendehl JK, Milford D, Eicke D et al (2012) Repeatable target localization for long-term in vivo imaging of mice with 2-photon microscopy. J Neurosci Methods 205:357–363. https://doi.org/10.1016/j.jneumeth.2011.10.029

    Article  PubMed  Google Scholar 

  10. Krebsforschungszentrum D, Spiess E, Bestvater F et al (2005) Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP. J Microsc. https://doi.org/10.1111/j.1365-2818.2005.01437.x

    Article  CAS  Google Scholar 

  11. Drobizhev M, Makarov NS, Tillo SE et al (2011) Two-photon absorption properties of fluorescent proteins. Nat Methods 8:393–399. https://doi.org/10.1038/nmeth.1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Drobizhev M, Tillo S, Makarov NS et al (2009) Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins. J Phys Chem B. https://doi.org/10.1021/jp8087379

    Article  CAS  Google Scholar 

  13. Cox AJ, DeWeerd AJ, Linden J (2002) An experiment to measure Mie and Rayleigh total scattering cross sections. Am J Phys. https://doi.org/10.1119/1.1466815

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to the people who have contributed toward developing and optimizing the methods described herein; particularly David Milford, Daniel Eicke, and Christian Feldhaus for developing and testing the Head Fixation system. The support of Professor Mathias Jucker throughout the development of this work is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos A. Skodras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Skodras, A.A., Hefendehl, J.K., Neher, J.J. (2019). Long-Term In Vivo Imaging of Individual Microglial Cells. In: Garaschuk, O., Verkhratsky, A. (eds) Microglia. Methods in Molecular Biology, vol 2034. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9658-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9658-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9657-5

  • Online ISBN: 978-1-4939-9658-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics