Skip to main content

FN3 Protein Conjugates for Cancer Diagnosis and Imaging Studies

  • Protocol
  • First Online:
Bioconjugation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2033))

Abstract

Bioconjugation of biologically useful proteins is in great demand (e.g., conjugation to biotins, metal chelators, and drug carriers to target specific tissues for both in vitro and in vivo use). These conjugates provide widespread opportunities for various biological and biomedical applications. Evolving state-of-the-art protein conjugation strategies have led to the development of many affinity ligands, including for cancer imaging and diagnosis. However, to achieve the desirable protein conjugates, there are many challenges that remain to be addressed in order to obtain a reproducible procedure for all proteins and ligands. These include a control over the protein modification and the efficiency of the conjugation while retaining the original biological protein affinity postmodification. Here we present detailed conjugation methods for the human fibronectin tenth type III domain (FN3) protein scaffold for use in preclinical PET imaging. More specifically, this chapter provides detailed methods to produce a FN3 and a FN3-chelator-conjugate, its labeling with the radionuclide 64-Cu, and its use for noninvasive PET imaging in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwartz RS (2004) Paul Ehrlich’s magic bullets. N Engl J Med 350:1079–1080

    Article  CAS  Google Scholar 

  2. Blaise L, Wehnert A, Steukers MP et al (2004) Construction and diversification of yeast cell surface displayed libraries by yeast mating: application to the affinity maturation of Fab antibody fragments. Gene 342:211–218

    Article  CAS  Google Scholar 

  3. Weaver-Feldhaus JM, Lou J, Coleman JR et al (2004) Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett 564:24–34

    Article  CAS  Google Scholar 

  4. Gebauer M, Skerra A (2009) Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13:245–255

    Article  CAS  Google Scholar 

  5. Tami JA, Parr MD, Brown SA et al (1986) Monoclonal antibody technology. Am J Hosp Pharm 43:2816–2825

    CAS  PubMed  Google Scholar 

  6. Shukla AA, Thommes J (2010) Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 28:253–261

    Article  CAS  Google Scholar 

  7. Koide A, Gilbreth RN, Esaki K et al (2007) High-affinity single-domain binding proteins with a binary-code interface. Proc Natl Acad Sci U S A 104:6632–6637

    Article  CAS  Google Scholar 

  8. Hackel BJ, Wittrup KD (2010) The full amino acid repertoire is superior to serine/tyrosine for selection of high affinity immunoglobulin G binders from the fibronectin scaffold. Protein Eng Des Sel 23:211–219

    Article  CAS  Google Scholar 

  9. Koide S, Koide A, Lipovsek D (2012) Target-binding proteins based on the 10th human fibronectin type III domain ((1)(0)Fn3). Methods Enzymol 503:135–156

    Article  CAS  Google Scholar 

  10. Petersen TE, Thogersen HC, Skorstengaard K et al (1983) Partial primary structure of bovine plasma fibronectin: three types of internal homology. Proc Natl Acad Sci U S A 80:137–141

    Article  CAS  Google Scholar 

  11. Karatan E, Merguerian M, Han Z et al (2004) Molecular recognition properties of FN3 monobodies that bind the Src SH3 domain. Chem Biol 11:835–844

    Article  CAS  Google Scholar 

  12. Hackel BJ, Kapila A, Wittrup KD (2008) Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling. J Mol Biol 381:1238–1252

    Article  CAS  Google Scholar 

  13. Tolcher AW, Sweeney CJ, Papadopoulos K et al (2011) Phase I and pharmacokinetic study of CT-322 (BMS-844203), a targeted Adnectin inhibitor of VEGFR-2 based on a domain of human fibronectin. Clin Cancer Res 17:363–371

    Article  CAS  Google Scholar 

  14. Hackel BJ, Kimura RH, Gambhir SS (2012) Use of (64)cu-labeled fibronectin domain with EGFR-overexpressing tumor xenograft: molecular imaging. Radiology 263:179–188

    Article  Google Scholar 

  15. Natarajan A, Hackel BJ, Gambhir SS (2013) A novel engineered anti-CD20 tracer enables early time PET imaging in a humanized transgenic mouse model of B-cell non-Hodgkins lymphoma. Clin Cancer Res 19:6820–6829

    Article  CAS  Google Scholar 

  16. Huang R, Gorman KT, Vinci CR et al (2015) Streamlining the pipeline for generation of recombinant affinity reagents by integrating the affinity maturation step. Int J Mol Sci 16:23587–23603

    Article  CAS  Google Scholar 

  17. Park SH, Park S, Kim DY et al (2015) Isolation and characterization of a monobody with a fibronectin domain III scaffold that specifically binds EphA2. PLoS One 10:e0132976

    Article  Google Scholar 

  18. Heinzelman P, Krais J, Ruben E et al (2015) Engineering pH responsive fibronectin domains for biomedical applications. J Biol Eng 9:6

    Article  Google Scholar 

  19. Abou-Elkacem L, Wilson KE, Johnson SM et al (2016) Ultrasound molecular imaging of the breast cancer neovasculature using engineered fibronectin scaffold ligands: a novel class of targeted contrast ultrasound agent. Theranostics 6:1740–1752

    Article  CAS  Google Scholar 

  20. Kulemzin SV, Gorchakov AA, Chikaev AN et al (2018) VEGFR2-specific FnCAR effectively redirects the cytotoxic activity of T cells and YT NK cells. Oncotarget 9:9021–9029

    Article  Google Scholar 

  21. Sirois AR, Deny DA, Baierl SR et al (2018) Fn3 proteins engineered to recognize tumor biomarker mesothelin internalize upon binding. PLoS One 13:e0197029

    Article  Google Scholar 

  22. Natarajan A, Patel CB, Ramakrishnan S et al (2018) A novel engineered small protein for positron emission tomography imaging of human programmed death ligand-1: validation in mouse models and human cancer tissues. Clin Cancer Res 25:1774. https://doi.org/10.1158/1078-0432.CCR-18-1871

    Article  PubMed  Google Scholar 

  23. Hackel BJ, Ackerman ME, Howland SW et al (2010) Stability and CDR composition biases enrich binder functionality landscapes. J Mol Biol 401:84–96

    Article  CAS  Google Scholar 

  24. Wurch T, Pierre A, Depil S (2012) Novel protein scaffolds as emerging therapeutic proteins: from discovery to clinical proof-of-concept. Trends Biotechnol 30:575–582

    Article  CAS  Google Scholar 

  25. Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137

    Article  CAS  Google Scholar 

  26. Bock VD, Perciaccante R, Jansen TP et al (2006) Click chemistry as a route to cyclic tetrapeptide analogues: synthesis of cyclo-[Pro-Val-psi(triazole)-Pro-Tyr]. Org Lett 8:919–922

    Article  CAS  Google Scholar 

  27. Breinbauer R, Kohn M (2003) Azide-alkyne coupling: a powerful reaction for bioconjugate chemistry. Chembiochem 4:1147–1149

    Article  CAS  Google Scholar 

  28. Hein JE, Fokin VV (2010) Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem Soc Rev 39:1302–1315

    Article  CAS  Google Scholar 

  29. Zhu L, Brassard CJ, Zhang X et al (2016) On the mechanism of copper(I)-catalyzed azide-alkyne cycloaddition. Chem Rec 16:1501–1517

    Article  CAS  Google Scholar 

  30. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163

    Article  CAS  Google Scholar 

  31. Jewett JC, Bertozzi CR (2010) Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39:1272–1279

    Article  CAS  Google Scholar 

  32. Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126:15046–15047

    Article  CAS  Google Scholar 

  33. McKay CS, Finn MG (2014) Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem Biol 21:1075–1101

    Article  CAS  Google Scholar 

  34. Dai L, Jones CM, Chan WTK et al (2018) Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications. Nat Commun 9:857

    Article  Google Scholar 

  35. Tei L, Baranyai Z, Gaino L et al (2015) Thermodynamic stability, kinetic inertness and relaxometric properties of monoamide derivatives of lanthanide(III) DOTA complexes. Dalton Trans 44:5467–5478

    Article  CAS  Google Scholar 

  36. Schwarz G, Mueller L, Beck S et al (2014) DOTA based metal labels for protein quantification: a review. J Anal At Spectrom 29:221–233

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the SCi3 Core imaging facilities and the Canary Center at Stanford for providing technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arutselvan Natarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Natarajan, A., Abou-Elkacem, L. (2019). FN3 Protein Conjugates for Cancer Diagnosis and Imaging Studies. In: Massa, S., Devoogdt, N. (eds) Bioconjugation. Methods in Molecular Biology, vol 2033. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9654-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9654-4_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9653-7

  • Online ISBN: 978-1-4939-9654-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics