Skip to main content

Labeling Proteins at Site-Specifically Incorporated 5-Hydroxytryptophan Residues Using a Chemoselective Rapid Azo-Coupling Reaction

  • Protocol
  • First Online:
Bioconjugation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2033))

Abstract

Chemoselective protein labeling is a valuable tool in the arsenal of modern chemical biology. The unnatural amino acid mutagenesis technology provides a powerful way to site-specifically introduce nonnatural chemical functionalities into recombinant proteins, which can be subsequently functionalized in a chemoselective manner. Even though several strategies currently exist to selectively label recombinant proteins in this manner, there is considerable interest for the development of additional chemoselective reactions that are fast, catalyst-free, use readily available reagents, and are compatible with existing conjugation chemistries. Here we describe a method to express recombinant proteins in E. coli site-specifically incorporating 5-hydroxytryptophan, followed by the chemoselective labeling of this residue using a chemoselective rapid azo-coupling reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lang K, Chin JW (2014) Bioorthogonal reactions for labeling proteins. ACS Chem Biol 9:16–20. https://doi.org/10.1021/cb4009292

    Article  CAS  PubMed  Google Scholar 

  2. McKay CS, Finn MG (2014) Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem Biol 21:1075–1101. https://doi.org/10.1016/j.chembiol.2014.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramil CP, Lin Q (2013) Bioorthogonal chemistry: strategies and recent developments. Chem Commun (Camb) 49:11007–11022. https://doi.org/10.1039/c3cc44272a

    Article  CAS  Google Scholar 

  4. Shih HW, Kamber DN, Prescher JA (2014) Building better bioorthogonal reactions. Curr Opin Chem Biol 21:103–111. https://doi.org/10.1016/j.cbpa.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  5. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48:6974–6998. https://doi.org/10.1002/anie.200900942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stephanopoulos N, Francis MB (2011) Choosing an effective protein bioconjugation strategy. Nat Chem Biol 7:876–884. https://doi.org/10.1038/nchembio.720

    Article  CAS  PubMed  Google Scholar 

  7. Dumas A, Lercher L, Spicer CD, Davis BG (2015) Designing logical codon reassignment–expanding the chemistry in biology. Chem Sci 6:50–69. https://doi.org/10.1039/C4SC01534G

    Article  CAS  PubMed  Google Scholar 

  8. Kim CH, Axup JY, Schultz PG (2013) Protein conjugation with genetically encoded unnatural amino acids. Curr Opin Chem Biol 17:412–419. https://doi.org/10.1016/j.cbpa.2013.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lang K, Chin JW (2014) Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev 114:4764–4806. https://doi.org/10.1021/cr400355w

    Article  CAS  PubMed  Google Scholar 

  10. Young DD, Schultz PG (2018) Playing with the molecules of life. ACS Chem Biol 13:854–870. https://doi.org/10.1021/acschembio.7b00974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Italia JS, Zheng Y, Kelemen RE, Erickson SB, Addy PS, Chatterjee A (2017) Expanding the genetic code of mammalian cells. Biochem Soc Trans 45:555–562. https://doi.org/10.1042/BST20160336

    Article  CAS  PubMed  Google Scholar 

  12. Italia JS, Addy PS, Wrobel CJ, Crawford LA, Lajoie MJ, Zheng Y, Chatterjee A (2017) An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. Nat Chem Biol 13:446–450. https://doi.org/10.1038/nchembio.2312

    Article  CAS  PubMed  Google Scholar 

  13. Addy PS, Erickson SB, Italia JS, Chatterjee A (2017) A chemoselective rapid azo-coupling reaction (CRACR) for unclickable bioconjugation. J Am Chem Soc 139:11670–11673. https://doi.org/10.1021/jacs.7b05125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Addy PS, Italia JS, Chatterjee A (2018) An oxidative bioconjugation strategy targeted to a genetically encoded 5-hydroxytryptophan. Chembiochem 19:1375–1378. https://doi.org/10.1002/cbic.201800111

    Article  CAS  Google Scholar 

  15. Italia JS, Addy PS, Erickson SB, Peeler JC, Weerapana E, Chatterjee A (2019) Mutually orthogonal nonsense-suppression systems and conjugation chemistries for precise protein labeling at up to three distinct sites. J Am Chem Soc 141(15):6204–6212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bruckman MA, Kaur G, Lee LA, Xie F, Sepulveda J, Breitenkamp R, Zhang X, Joralemon M, Russell TP, Emrick T, Wang Q (2008) Surface modification of tobacco mosaic virus with “click” chemistry. Chembiochem 9:519–523. https://doi.org/10.1002/cbic.200700559

    Article  CAS  PubMed  Google Scholar 

  17. Gavrilyuk J, Ban H, Nagano M, Hakamata W, Barbas CF 3rd (2012) Formylbenzene diazonium hexafluorophosphate reagent for tyrosine-selective modification of proteins and the introduction of a bioorthogonal aldehyde. Bioconjug Chem 23:2321–2328. https://doi.org/10.1021/bc300410p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hooker JM, Kovacs EW, Francis MB (2004) Interior surface modification of bacteriophage MS2. J Am Chem Soc 126:3718–3719. https://doi.org/10.1021/ja031790q

    Article  CAS  PubMed  Google Scholar 

  19. Schlick TL, Ding Z, Kovacs EW, Francis MB (2005) Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc 127:3718–3723. https://doi.org/10.1021/ja046239n

    Article  CAS  PubMed  Google Scholar 

  20. He J, Kimani FW, Jewett JC (2015) A photobasic functional group. J Am Chem Soc 137:9764–9767. https://doi.org/10.1021/jacs.5b04367

    Article  CAS  PubMed  Google Scholar 

  21. Jensen SM, Kimani FW, Jewett JC (2016) Light-activated triazabutadienes for the modification of a viral surface. Chembiochem 17:2216–2219. https://doi.org/10.1002/cbic.201600508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kimani FW, Jewett JC (2015) Water-soluble triazabutadienes that release diazonium species upon protonation under physiologically relevant conditions. Angew Chem Int Ed Engl 54:4051–4054. https://doi.org/10.1002/anie.201411277

    Article  CAS  PubMed  Google Scholar 

  23. Hutchins BM, Kazane SA, Staflin K, Forsyth JS, Felding-Habermann B, Schultz PG, Smider VV (2011) Site-specific coupling and sterically controlled formation of multimeric antibody fab fragments with unnatural amino acids. J Mol Biol 406:595–603. https://doi.org/10.1016/j.jmb.2011.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hutchins BM, Kazane SA, Staflin K, Forsyth JS, Felding-Habermann B, Smider VV, Schultz PG (2011) Selective formation of covalent protein heterodimers with an unnatural amino acid. Chem Biol 18:299–303. https://doi.org/10.1016/j.chembiol.2011.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH (R01GM124319 to A.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Addy, P.S., Erickson, S.B., Italia, J.S., Chatterjee, A. (2019). Labeling Proteins at Site-Specifically Incorporated 5-Hydroxytryptophan Residues Using a Chemoselective Rapid Azo-Coupling Reaction. In: Massa, S., Devoogdt, N. (eds) Bioconjugation. Methods in Molecular Biology, vol 2033. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9654-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9654-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9653-7

  • Online ISBN: 978-1-4939-9654-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics