Skip to main content

Protein Labeling and Bioconjugation Using N-Myristoyltransferase

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2033))

Abstract

Methods that allow for labeling of proteins cotranslationally within protein expression systems have had wide-ranging applications in health, engineering, and medicine. Bioorthogonal chemistries that allow for conjugation of proteins or biomolecules of interest to substrates (fluorophores, gold nanoparticles, polymers, etc.) in living cells without prior enrichment or purification have likewise enabled advances in technology to study and engineer cellular and biomolecular systems. At the intersection of these, chemoenzymatic labeling of proteins at specific sites of interest and their subsequent selective bioconjugation to substrates without prior purification has dramatically streamlined workflows that allow proteins to reside in the native expression volumes as long as possible prior to conjugation, be readily isolated upon conjugation, and remain functionally active after conjugation. Here we present methods and protocols to express and label proteins of interest at the N-terminus with azide derivatives of myristic acid, a small, soluble, 14-carbon fatty acid, and conjugate the labeled protein to fluorophores and gold nanoparticle substrates. These methods can be extended to label proteins with other myristoyl derivatives and to conjugation to other solid or polymeric substrates of interest.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kiick KL, Saxon E, Tirrell DA, Bertozzi CR (2002) Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci U S A 99(1):19–24

    Article  CAS  Google Scholar 

  2. Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG (1989) A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244(4901):182–188

    Article  CAS  Google Scholar 

  3. Bain JD, Diala ES, Glabe CG, Dix TA, Chamberlin AR (1989) Biosynthetic site-specific incorporation of a non-natural amino acid into a polypeptide. J Am Chem Soc 111(20):8013–8014

    Article  CAS  Google Scholar 

  4. Link AJ, Mock ML, Tirrell DA (2003) Non-canonical amino acids in protein engineering. Curr Opin Biotechnol 14(6):603–609

    Article  CAS  Google Scholar 

  5. Palaniappan KK, Bertozzi CR (2016) Chemical glycoproteomics. Chem Rev 116(23):14277–14306

    Article  CAS  Google Scholar 

  6. Rexach JE, Clark PM, Hsieh-Wilson LC (2008) Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol 4(2):97–106

    Article  CAS  Google Scholar 

  7. Yang S, Rubin A, Eshghi ST, Zhang H (2016) Chemoenzymatic method for glycomics: isolation, identification, and quantitation. Proteomics 16(2):241–256

    Article  CAS  Google Scholar 

  8. Ritzefeld M (2014) Sortagging: a robust and efficient chemoenzymatic ligation strategy. Chemistry 20(28):8516–8529

    Article  CAS  Google Scholar 

  9. Popp MW, Antos JM, Grotenbreg GM, Spooner E, Ploegh HL (2007) Sortagging: a versatile method for protein labeling. Nat Chem Biol 3(11):707–708

    Article  CAS  Google Scholar 

  10. Lanyon-Hogg T, Faronato M, Serwa RA, Tate EW (2017) Dynamic protein acylation: new substrates, mechanisms, and drug targets. Trends Biochem Sci 42(7):566–581

    Article  CAS  Google Scholar 

  11. Hang HC, Wilson JP, Charron G (2011) Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking. Acc Chem Res 44(9):699–708

    Article  CAS  Google Scholar 

  12. Thinon E, Hang HC (2015) Chemical reporters for exploring protein acylation. Biochem Soc Trans 43(2):253–261

    Article  CAS  Google Scholar 

  13. Hannoush RN (2015) Synthetic protein lipidation. Curr Opin Chem Biol 28:39–46

    Article  CAS  Google Scholar 

  14. Duckworth BP, Zhang Z, Hosokawa A, Distefano MD (2007) Selective labeling of proteins by using protein farnesyltransferase. Chembiochem 8(1):98–105

    Article  CAS  Google Scholar 

  15. Mahmoodi MM, Rashidian M, Dozier JK, Distefano MD (2013) Chemoenzymatic site-specific reversible immobilization and labeling of proteins from crude cellular extract without prior purification using oxime and hydrazine ligation. Curr Protoc Chem Biol 5(2):89–109

    Article  Google Scholar 

  16. Gao X, Hannoush RN (2018) A decade of click chemistry in protein palmitoylation: impact on discovery and new biology. Cell Chem Biol 25(3):236–246

    Article  CAS  Google Scholar 

  17. Hang HC, Linder ME (2011) Exploring protein lipidation with chemical biology. Chem Rev 111(10):6341–6358

    Article  CAS  Google Scholar 

  18. Kulkarni C, Kinzer-Ursem TL, Tirrell DA (2013) Selective functionalization of the protein N terminus with N-myristoyl transferase for bioconjugation in cell lysate. Chembiochem 14(15):1958–1962

    Article  CAS  Google Scholar 

  19. Kulkarni C, Lo M, Fraseur JG, Tirrell DA, Kinzer-Ursem TL (2015) Bioorthogonal chemoenzymatic functionalization of calmodulin for bioconjugation applications. Bioconjug Chem 26(10):2153–2160

    Article  CAS  Google Scholar 

  20. Rashidian M, Dozier JK, Distefano MD (2013) Enzymatic labeling of proteins: techniques and approaches. Bioconjug Chem 24(8):1277–1294

    Article  CAS  Google Scholar 

  21. Rabuka D (2010) Chemoenzymatic methods for site-specific protein modification. Curr Opin Chem Biol 14(6):790–796

    Article  CAS  Google Scholar 

  22. Farazi TA, Waksman G, Gordon JI (2001) The biology and enzymology of protein N-myristoylation. J Biol Chem 276(43):39501–39504

    Article  CAS  Google Scholar 

  23. Jacob E, Unger R (2007) A tale of two tails: why are terminal residues of proteins exposed? Bioinformatics 23(2):e225–e230

    Article  CAS  Google Scholar 

  24. Devadas B, Lu T, Katoh A, Kishore NS, Wade AC, Mehta PP, Rudnick DA, Bryant ML, Adams SP, Li Q et al (1992) Substrate specificity of Saccharomyces cerevisiae myristoyl-CoA: protein N-myristoyltransferase. Analysis of fatty acid analogs containing carbonyl groups, nitrogen heteroatoms, and nitrogen heterocycles in an in vitro enzyme assay and subsequent identification of inhibitors of human immunodeficiency virus I replication. J Biol Chem 267(11):7224–7239

    CAS  PubMed  Google Scholar 

  25. Kishore NS, Lu TB, Knoll LJ, Katoh A, Rudnick DA, Mehta PP, Devadas B, Huhn M, Atwood JL, Adams SP et al (1991) The substrate specificity of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase. Analysis of myristic acid analogs containing oxygen, sulfur, double bonds, triple bonds, and/or an aromatic residue. J Biol Chem 266(14):8835–8855

    CAS  PubMed  Google Scholar 

  26. Lu T, Li Q, Katoh A, Hernandez J, Duffin K, Jackson-Machelski E, Knoll LJ, Gokel GW, Gordon JI (1994) The substrate specificity of Saccharomyces cerevisiae myristoyl-CoA: protein N-myristoyltransferase. Polar probes of the enzyme’s myristoyl-CoA recognition site. J Biol Chem 269(7):5346–5357

    CAS  PubMed  Google Scholar 

  27. Boutin JA (1997) Myristoylation. Cell Signal 9(1):15–35

    Article  CAS  Google Scholar 

  28. Johnson DR, Bhatnagar RS, Knoll LJ, Gordon JI (1994) Genetic and biochemical studies of protein N-myristoylation. Annu Rev Biochem 63:869–914

    Article  CAS  Google Scholar 

  29. Duronio RJ, Jackson-Machelski E, Heuckeroth RO, Olins PO, Devine CS, Yonemoto W, Slice LW, Taylor SS, Gordon JI (1990) Protein N-myristoylation in Escherichia coli: reconstitution of a eukaryotic protein modification in bacteria. Proc Natl Acad Sci U S A 87(4):1506–1510

    Article  CAS  Google Scholar 

  30. Heal WP, Wickramasinghe SR, Bowyer PW, Holder AA, Smith DF, Leatherbarrow RJ, Tate EW (2008) Site-specific N-terminal labelling of proteins in vitro and in vivo using N-myristoyl transferase and bioorthogonal ligation chemistry. Chem Commun (4):480–482

    Google Scholar 

  31. Heal WP, Wickramasinghe SR, Leatherbarrow RJ, Tate EW (2008) N-Myristoyl transferase-mediated protein labelling in vivo. Org Biomol Chem 6(13):2308–2315

    Article  CAS  Google Scholar 

  32. Heal WP, Wright MH, Thinon E, Tate EW (2012) Multifunctional protein labeling via enzymatic N-terminal tagging and elaboration by click chemistry. Nat Protoc 7(1):105–117

    Article  CAS  Google Scholar 

  33. Fraseur JG, Kinzer-Ursem TL (2018) Next generation calmodulin affinity purification: clickable calmodulin facilitates improved protein purification. PLoS One 13(6):e0197120

    Article  Google Scholar 

  34. Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126(46):15046–15047

    Article  CAS  Google Scholar 

  35. Presolski SI, Hong VP, Finn MG (2011) Copper-catalyzed azide-alkyne click chemistry for bioconjugation. Curr Protoc Chem Biol 3(4):153–162

    PubMed  PubMed Central  Google Scholar 

  36. Rashidian M, Dozier JK, Lenevich S, Distefano MD (2010) Selective labeling of polypeptides using protein farnesyltransferase via rapid oxime ligation. Chem Commun 46(47):8998–9000

    Article  CAS  Google Scholar 

  37. Blackman ML, Royzen M, Fox JM (2008) Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc 130(41):13518–13519

    Article  CAS  Google Scholar 

  38. Oliveira BL, Guo Z, Bernardes GJL (2017) Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 46(16):4895–4950

    Article  CAS  Google Scholar 

  39. Sletten EM, Bertozzi CR (2011) A bioorthogonal quadricyclane ligation. J Am Chem Soc 133(44):17570–17573

    Article  CAS  Google Scholar 

  40. Tomlin FM, Gordon CG, Han Y, Wu TS, Sletten EM, Bertozzi CR (2018) Site-specific incorporation of quadricyclane into a protein and photocleavage of the quadricyclane ligation adduct. Bioorg Med Chem

    Google Scholar 

  41. McKay CS, Finn MG (2014) Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem Biol 21(9):1075–1101

    Article  CAS  Google Scholar 

  42. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48(38):6974–6998

    Article  CAS  Google Scholar 

  43. McCabe JB, Berthiaume LG, Pfeffer SR (1999) Functional roles for fatty acylated amino-terminal domains in subcellular localization. Mol Biol Cell 10(11):3771–3786

    Article  CAS  Google Scholar 

  44. Clayton KN, Fraseur JG, Wereley ST, Kinzer-Ursem TL (2018) Functionalizing gold nanoparticles via click chemistry with highly active proteins directly from cell lysates. (in preparation)

    Google Scholar 

  45. Van Valkenburgh HA, Kahn RA (2002) Coexpression of proteins with methionine aminopeptidase and/or N-myristoyltransferase in Escherichia coli to increase acylation and homogeneity of protein preparations. Methods Enzymol 344:186–193

    Article  Google Scholar 

  46. Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR (2006) A comparative study of bioorthogonal reactions with azides. ACS Chem Biol 1(10):644–648

    Article  CAS  Google Scholar 

  47. Witten AJ, Ejendal KFK, Gengelbach LM, Traore MA, Wang X, Umulis DM, Calve S, Kinzer-Ursem TL (2017) Fluorescent imaging of protein myristoylation during cellular differentiation and development. J Lipid Res 58(10):2061–2070

    Article  CAS  Google Scholar 

  48. Hannoush RN, Sun J (2010) The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat Chem Biol 6(7):498–506

    Article  CAS  Google Scholar 

  49. Tate EW, Kalesh KA, Lanyon-Hogg T, Storck EM, Thinon E (2015) Global profiling of protein lipidation using chemical proteomic technologies. Curr Opin Chem Biol 24:48–57

    Article  CAS  Google Scholar 

  50. Thinon E, Serwa RA, Broncel M, Brannigan JA, Brassat U, Wright MH, Heal WP, Wilkinson AJ, Mann DJ, Tate EW (2014) Global profiling of co- and post-translationally N-myristoylated proteomes in human cells. Nat Commun 5:4919

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Katherine N. Clayton who has been instrumental in developing the protocols described here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara L. Kinzer-Ursem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ejendal, K.F.K., Fraseur, J.G., Kinzer-Ursem, T.L. (2019). Protein Labeling and Bioconjugation Using N-Myristoyltransferase. In: Massa, S., Devoogdt, N. (eds) Bioconjugation. Methods in Molecular Biology, vol 2033. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9654-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9654-4_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9653-7

  • Online ISBN: 978-1-4939-9654-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics